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simple organisms also use chemotaxis to find 
the target

Simplify! 
(distance/directional information)

spatial network on 2D
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Greedy routing based on local geometric information

• “moving to the neighbor closest to the target”-strategy

• limitation: it sometimes fails, due to the possibility of being trapped

J.M. Kleinberg, Nature 406, 845 (2000); M. Boguñá et al., Nat. Phys. 5, 74 (2008); PRL 102, 058701 (2009).
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Greedy routing based on local geometric information

• “moving to the neighbor closest to the target”-strategy

• limitation: it sometimes fails, due to the possibility of being trapped

J.M. Kleinberg, Nature 406, 845 (2000); M. Boguñá et al., Nat. Phys. 5, 74 (2008); PRL 102, 058701 (2009).

source

target

nowhere to go! (failure)

Note: look at the graph as shown in the 2D (Euclidean) space!
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the unvisited neighbor whose 
direction (from the current vertex) 
closest to the direction to the target!
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Note: look at the graph as shown in the 2D (Euclidean) space!

“backtracking” to the deepest 
level above with an available
vertex to step down on is 
possible, if it’s stuck (finding
the next-best way from there)
DFS ≠ self-avoiding walk

greedy but (and?) 
smart navigator!

source

target

real shortest path …

random DFS …

Greedy Spatial Navigation (GSN) protocol

“biased” depth-first search (DFS) 
movement, based on direction: to 
the unvisited neighbor whose 
direction (from the current vertex) 
closest to the direction to the target!

stuck!

Why does GSN perform so well in this case?
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Secret of success: graph visualization technique

Kamada-Kawai (KK) spring-based graph layout

It looks good! (to human eyes)

side(?) effect: vertices closer in graphs tend to be 
located closer in (2D) geometric space as well!

So, does the layout algorithm really help GSN?
Barabási-Albert model

(purely topological)
Holme-Kim model
(topological, with 

non-vanishing clustering)

Watts-Strogatz model
(based on 1D ring)

biased Depth-First Search
Random Depth-First Search
Topologically Shortest Path

“exploitable” geometric information increased
SHL and P. Holme, Physica A 390, 3996 (2011).
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Application to real spatial networks

Boston road New York road

Switzerland railway
European railway

data from H. Youn et al., 
PRL 101, 128701 (2008)

data from M. Kurant et al., 
PRL 96, 138701 (2006)

quite efficient strategy for these real transport networks!
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GSN works in a maze!

real shortest path shown in filled vertices (d = 52 steps)
GSN pathway (dg = 87 steps) shown in arrows
average random DFS pathway (dr = 134(1) steps)



Maze in Leeds Castle,
Kent, England

GSN works in a maze!

real shortest path shown in filled vertices (d = 52 steps)
GSN pathway (dg = 87 steps) shown in arrows
average random DFS pathway (dr = 134(1) steps)

d/dg = 0.597 vs. d/dr = 0.388
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Navigator centralities for roads

navigator centrality vs betweenness centrality: “vertex/edge profile”

Boston

New York



Counterintuitive phenomenon caused by greedy navigators
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Counterintuitive phenomenon caused by greedy navigators

s

t7 steps
5 steps

“Braess” edge, reminiscent of 
the celebrated Braess’s paradox

H. Youn, M. Gastner, and H. Jeong, Phys. Rev. Lett. 101, 128701 (2008).



Quantifying this property: edge Essentiality e for edge
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Quantifying this property: edge Essentiality e for edge

edge Essentiality

)(aGPL}){\(aGPL)( GlGle −=

lengthpath  GSN average  aGPL where =

e(l) > 0: the removal of l 
deteriorates the navigability
→ “normal” edge l

e(l) < 0: the removal of l 
enhances the navigability
→ “Braess” edge l 
(from Braess’s paradox)



Edge essentiality for roads

edge essentiality vs edge betweenness

Boston

New York



Edge essentiality for roads

edge essentiality vs edge betweenness

Boston

New York

Harvard Bridge (on Charles River)

J. F. Kennedy St.
(adjacent to Anderson Memorial Bridge)

upper Brookline St. (Braess edge)



Is it possible to predict e or “Braessiness” from other 
topological/geometric characteristics?



Is it possible to predict e or “Braessiness” from other 
topological/geometric characteristics?

e heavily depends on very specific
geometric arrangements, so it is not
plausible to predict only from 
other network characteristics!



Let’s get more systematic and reliable data!
(unit area, uniform criterion for selecting roads, etc.)

Merkaartor program (available on Linux, Windows, Mac OS)



the first step to get the road network data with Merkaartor:
New York city case
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the first step to get the road network data with Merkaartor:
New York city case

export to osm (open street map) file

detect road patterns
"straighten  up" the roads and take 

the giant component in the unit area



Dataset: 20 largest cities in the US, Europe, Asia, Latin America, and 
Africa (100 cities in total)

US/Austin
US/Charlotte
US/Chicago
US/Columbus
US/Dallas
US/Detroit
US/ElPaso
US/FortWorth
US/Houston
US/Indianapolis
US/Jacksonville
US/LosAngeles
US/Memphis
US/NewYork
US/Philadelphia
US/Phoenix
US/SanAntonio
US/SanDiego
US/SanFrancisco
US/SanJose

Africa/Abidjan
Africa/Accra
Africa/AddisAbaba
Africa/Alexandria
Africa/Algiers
Africa/Cairo
Africa/CapeTown
Africa/Casablanca
Africa/Dakar
Africa/DarEsSalaam
Africa/Durban
Africa/Ibadan
Africa/Johannesburg
Africa/Khartoum
Africa/Kinshasa
Africa/Lagos
Africa/Luanda
Africa/Nairobi
Africa/Pretoria
Africa/Tunis

Asia/Bangkok
Asia/Beijing
Asia/Delhi
Asia/Dhaka
Asia/Guangzhou
Asia/HongKong
Asia/Jakarta
Asia/Karachi
Asia/Kolkata
Asia/Manila
Asia/Mumbai
Asia/Nagoya
Asia/Osaka
Asia/Seoul
Asia/Shanghai
Asia/Shenzhen
Asia/Taipei
Asia/Tehran
Asia/Tokyo
Asia/Wuhan

Europe/Barcelona
Europe/Berlin
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Hamburg
Europe/London
Europe/Lyon
Europe/Madrid
Europe/Marseille
Europe/Milan
Europe/Munich
Europe/Naples
Europe/Paris
Europe/Prague
Europe/Rome
Europe/Sofia
Europe/Valencia
Europe/Vienna
Europe/Warsaw

LatinAmerica/BeloHorizonte
LatinAmerica/Bogota
LatinAmerica/Brasilia
LatinAmerica/BuenosAires
LatinAmerica/Caracas
LatinAmerica/Fortaleza
LatinAmerica/Guadalajara
LatinAmerica/Guayaquil
LatinAmerica/Lima
LatinAmerica/Maracaibo
LatinAmerica/Medellin
LatinAmerica/MexicoCity
LatinAmerica/Monterrey
LatinAmerica/PortoAlegre
LatinAmerica/Recife
LatinAmerica/RioDeJaneiro
LatinAmerica/Salvador
LatinAmerica/Santiago
LatinAmerica/SantoDomingo
LatinAmerica/SaoPaulo



d/dg vs d/dr profile for 100 large cities (2 km*2 km samples)

• d: real shortest path length

• dg: GSN path length

• dr: random DFS path length

d/dg compared to d/dr:
measure of  navigability

observe that its absence helps the large volume of traffic
from the upper left part to avoid entering the central part to
reach the lower right part, and induce to take more efficient
peripheral roads. Of course, the external geographic factors
such as rivers, tunnels, bridges, and roads with various
speed limits are also important in practice. We take the
simplest approach and assume the geographical context
primarily gives a sense of direction for the navigation,
and neglect other effects. For future work it would be
interesting to extend our work with other information
into other navigability functions, e.g., Bureau of Public
Roads (BPR) function [16]. We also notice that road 3 in
Fig. 3(e) with the largest e value (and the second largest b
value) corresponds to the Harvard bridge across the
Charles River, illustrating the case of deducing the crucial
infrastructure based solely on the geometric positions,
without explicit awareness of the river.

The multiple linear regression results shown in Table II
demonstrate that predicting e values is not plausible from
the linear combination of those network and geometric
measures, with low R2 values. From the same regression
analysis on much larger Switzerland and European rail-
ways, we observe even smaller R2 values estimated by the
104 sampled source-target pairs for each removal of edge.
Therefore, e or the Braessiness is a uniquely measured only
by considering this greedy behavior of navigators. Finally,
we investigate whether there is any correlation between
navigability and various socioeconomic indices. We se-
lected the 20 largest cities in the United States (U.S.),
Europe, Asia, Latin America, and Africa, respectively,
(100 cities in total), and used the MERKAARTOR program
[20] and extracted a representative sample of each city (a
square of 2 km sides). First, we compared ! and " to the
numbers of vertices N, as shown in Fig. 4. There is a
striking difference between those two cases, where there
is a clear scaling relationship between " and N [Fig. 4(b)],
meaning that the random navigation is statistically

determined by the system sizes. In contrast, the widely
scattered points in Fig. 4(a) strongly suggests that the
numbers of vertices cannot predict ! at all, in addition to
the fact that purely topological measures cannot predict e
in Table II. In this respect, the ! obviously reflects unique
properties of different cities with vastly different develop-
mental histories. We could not find such measures (or
linear combinations of them)—e.g., population density,
median resident income, fraction of public transit commut-
ers, etc.—showing statistically significant correlations
with the navigability. Again this leads to the conclusion
that different cities have unique properties of navigability
independent of other socioeconomic factors. One example
is the correlation between the navigability and the popula-
tion change ratio of the 20 cities in the U.S. defined as
the ratio of the population change between 1960 and
2010 to the population in 1960 [21]. We observe a very
weak negative correlation between ! and the ratio
[R2 ¼ 0:09ð3Þ$—too weak perhaps for claiming a mean-
ingful conclusion dependence.
In summary, we have introduced a new routing strategy

incorporating greedy movement and memory of naviga-
tors. This strategy, we believe, is a minimal model consid-
ering the basic concept of human psychology for
navigation, namely, incomplete navigational information
and the memory not to be lost. From the results from real-
world road and railway structures, we demonstrate the
important difference in terms of centralities for navigation
and the fact that there exists the celebrated Braess’s para-
dox caused by the navigators’ behavior just equipped with
this simple strategy. From the observation of correlation
profiles for centralities in road structures, we have shown
that the importance of each element heavily depends on the
detailed layout of structures. We have focused on the final
efficiency of the routing processes in this work, but the
detailed process of GSN, e.g., the relative distance toward
the target during the routing process or the prevalence of
backtracking related to the structural properties of roads,
can be worthwhile future work. This type of tool—linking
spatial cognition, the environment, and emergent naviga-
tional properties—can be helpful for urban planners and
architects [22].
This research is supported by the Swedish Research

Council and theWCU program through NRF Korea funded
by MEST R31-2008-10029 (P. H.). The authors thank

TABLE II. Coefficients for the multiple linear regression e ¼
m1bþm2ðlengthÞ þm3cþm4ðkikjÞ for road networks, with
some measures defined on edges: b, the edge length, the distance
c from the midpoint of edges to the centroid of vertices, and the
product kikj of degrees of vertices attached to edges. The
statistical significance codes are <0:05, <0:01, and <0:001.

Road Boston NYC

m1 6.902c 9.389c

m2 &4:687' 10&5a &6:141' 10&5b

m3 &1:504' 10&6 2:142' 10&5a

m4 &8:817' 10&3b &5:653' 10&3a

Multiple R2 0:2508 0:1917
p value 7:784' 10&9 3:395' 10&9

a<0:05.
b<0:01.
c<0:001.
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FIG. 4 (color online). Scatter plots for the ! (a) and " (b) vs the
number of vertices N, for the 100 large cities in the world.

PRL 108, 128701 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

23 MARCH 2012

128701-4

d/
d g d/
d r



d/dg vs d/dr profile for 100 large cities (2 km*2 km samples)

• d: real shortest path length

• dg: GSN path length

• dr: random DFS path length

d/dg compared to d/dr:
measure of  navigability

New York

observe that its absence helps the large volume of traffic
from the upper left part to avoid entering the central part to
reach the lower right part, and induce to take more efficient
peripheral roads. Of course, the external geographic factors
such as rivers, tunnels, bridges, and roads with various
speed limits are also important in practice. We take the
simplest approach and assume the geographical context
primarily gives a sense of direction for the navigation,
and neglect other effects. For future work it would be
interesting to extend our work with other information
into other navigability functions, e.g., Bureau of Public
Roads (BPR) function [16]. We also notice that road 3 in
Fig. 3(e) with the largest e value (and the second largest b
value) corresponds to the Harvard bridge across the
Charles River, illustrating the case of deducing the crucial
infrastructure based solely on the geometric positions,
without explicit awareness of the river.

The multiple linear regression results shown in Table II
demonstrate that predicting e values is not plausible from
the linear combination of those network and geometric
measures, with low R2 values. From the same regression
analysis on much larger Switzerland and European rail-
ways, we observe even smaller R2 values estimated by the
104 sampled source-target pairs for each removal of edge.
Therefore, e or the Braessiness is a uniquely measured only
by considering this greedy behavior of navigators. Finally,
we investigate whether there is any correlation between
navigability and various socioeconomic indices. We se-
lected the 20 largest cities in the United States (U.S.),
Europe, Asia, Latin America, and Africa, respectively,
(100 cities in total), and used the MERKAARTOR program
[20] and extracted a representative sample of each city (a
square of 2 km sides). First, we compared ! and " to the
numbers of vertices N, as shown in Fig. 4. There is a
striking difference between those two cases, where there
is a clear scaling relationship between " and N [Fig. 4(b)],
meaning that the random navigation is statistically

determined by the system sizes. In contrast, the widely
scattered points in Fig. 4(a) strongly suggests that the
numbers of vertices cannot predict ! at all, in addition to
the fact that purely topological measures cannot predict e
in Table II. In this respect, the ! obviously reflects unique
properties of different cities with vastly different develop-
mental histories. We could not find such measures (or
linear combinations of them)—e.g., population density,
median resident income, fraction of public transit commut-
ers, etc.—showing statistically significant correlations
with the navigability. Again this leads to the conclusion
that different cities have unique properties of navigability
independent of other socioeconomic factors. One example
is the correlation between the navigability and the popula-
tion change ratio of the 20 cities in the U.S. defined as
the ratio of the population change between 1960 and
2010 to the population in 1960 [21]. We observe a very
weak negative correlation between ! and the ratio
[R2 ¼ 0:09ð3Þ$—too weak perhaps for claiming a mean-
ingful conclusion dependence.
In summary, we have introduced a new routing strategy

incorporating greedy movement and memory of naviga-
tors. This strategy, we believe, is a minimal model consid-
ering the basic concept of human psychology for
navigation, namely, incomplete navigational information
and the memory not to be lost. From the results from real-
world road and railway structures, we demonstrate the
important difference in terms of centralities for navigation
and the fact that there exists the celebrated Braess’s para-
dox caused by the navigators’ behavior just equipped with
this simple strategy. From the observation of correlation
profiles for centralities in road structures, we have shown
that the importance of each element heavily depends on the
detailed layout of structures. We have focused on the final
efficiency of the routing processes in this work, but the
detailed process of GSN, e.g., the relative distance toward
the target during the routing process or the prevalence of
backtracking related to the structural properties of roads,
can be worthwhile future work. This type of tool—linking
spatial cognition, the environment, and emergent naviga-
tional properties—can be helpful for urban planners and
architects [22].
This research is supported by the Swedish Research

Council and theWCU program through NRF Korea funded
by MEST R31-2008-10029 (P. H.). The authors thank
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d/dg vs d/dr profile for 100 large cities (2 km*2 km samples)

• d: real shortest path length

• dg: GSN path length

• dr: random DFS path length

d/dg compared to d/dr:
measure of  navigability

diverse values for d/dg vs clear scaling for d/dr:
d/dg shows the real characteristics of city structures

New York

observe that its absence helps the large volume of traffic
from the upper left part to avoid entering the central part to
reach the lower right part, and induce to take more efficient
peripheral roads. Of course, the external geographic factors
such as rivers, tunnels, bridges, and roads with various
speed limits are also important in practice. We take the
simplest approach and assume the geographical context
primarily gives a sense of direction for the navigation,
and neglect other effects. For future work it would be
interesting to extend our work with other information
into other navigability functions, e.g., Bureau of Public
Roads (BPR) function [16]. We also notice that road 3 in
Fig. 3(e) with the largest e value (and the second largest b
value) corresponds to the Harvard bridge across the
Charles River, illustrating the case of deducing the crucial
infrastructure based solely on the geometric positions,
without explicit awareness of the river.

The multiple linear regression results shown in Table II
demonstrate that predicting e values is not plausible from
the linear combination of those network and geometric
measures, with low R2 values. From the same regression
analysis on much larger Switzerland and European rail-
ways, we observe even smaller R2 values estimated by the
104 sampled source-target pairs for each removal of edge.
Therefore, e or the Braessiness is a uniquely measured only
by considering this greedy behavior of navigators. Finally,
we investigate whether there is any correlation between
navigability and various socioeconomic indices. We se-
lected the 20 largest cities in the United States (U.S.),
Europe, Asia, Latin America, and Africa, respectively,
(100 cities in total), and used the MERKAARTOR program
[20] and extracted a representative sample of each city (a
square of 2 km sides). First, we compared ! and " to the
numbers of vertices N, as shown in Fig. 4. There is a
striking difference between those two cases, where there
is a clear scaling relationship between " and N [Fig. 4(b)],
meaning that the random navigation is statistically

determined by the system sizes. In contrast, the widely
scattered points in Fig. 4(a) strongly suggests that the
numbers of vertices cannot predict ! at all, in addition to
the fact that purely topological measures cannot predict e
in Table II. In this respect, the ! obviously reflects unique
properties of different cities with vastly different develop-
mental histories. We could not find such measures (or
linear combinations of them)—e.g., population density,
median resident income, fraction of public transit commut-
ers, etc.—showing statistically significant correlations
with the navigability. Again this leads to the conclusion
that different cities have unique properties of navigability
independent of other socioeconomic factors. One example
is the correlation between the navigability and the popula-
tion change ratio of the 20 cities in the U.S. defined as
the ratio of the population change between 1960 and
2010 to the population in 1960 [21]. We observe a very
weak negative correlation between ! and the ratio
[R2 ¼ 0:09ð3Þ$—too weak perhaps for claiming a mean-
ingful conclusion dependence.
In summary, we have introduced a new routing strategy

incorporating greedy movement and memory of naviga-
tors. This strategy, we believe, is a minimal model consid-
ering the basic concept of human psychology for
navigation, namely, incomplete navigational information
and the memory not to be lost. From the results from real-
world road and railway structures, we demonstrate the
important difference in terms of centralities for navigation
and the fact that there exists the celebrated Braess’s para-
dox caused by the navigators’ behavior just equipped with
this simple strategy. From the observation of correlation
profiles for centralities in road structures, we have shown
that the importance of each element heavily depends on the
detailed layout of structures. We have focused on the final
efficiency of the routing processes in this work, but the
detailed process of GSN, e.g., the relative distance toward
the target during the routing process or the prevalence of
backtracking related to the structural properties of roads,
can be worthwhile future work. This type of tool—linking
spatial cognition, the environment, and emergent naviga-
tional properties—can be helpful for urban planners and
architects [22].
This research is supported by the Swedish Research
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TABLE II. Coefficients for the multiple linear regression e ¼
m1bþm2ðlengthÞ þm3cþm4ðkikjÞ for road networks, with
some measures defined on edges: b, the edge length, the distance
c from the midpoint of edges to the centroid of vertices, and the
product kikj of degrees of vertices attached to edges. The
statistical significance codes are <0:05, <0:01, and <0:001.

Road Boston NYC

m1 6.902c 9.389c

m2 &4:687' 10&5a &6:141' 10&5b

m3 &1:504' 10&6 2:142' 10&5a

m4 &8:817' 10&3b &5:653' 10&3a

Multiple R2 0:2508 0:1917
p value 7:784' 10&9 3:395' 10&9

a<0:05.
b<0:01.
c<0:001.
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FIG. 4 (color online). Scatter plots for the ! (a) and " (b) vs the
number of vertices N, for the 100 large cities in the world.
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If we’re designers/architects of systems … (Part I)

• How to optimize the network edges for “greedy and 
smart” navigator with GSN strategy?

• initial configuration: minimum spanning tree (MST) from the 
given vertices on 2D space, minimizing the total length of 
the road

• adding a shortcut which does not cross the existing edges, 
maximizing the GSN performance at each time step
– repeating this as long as the sum of all the road lengths 

does not exceed a certain threshold lmax (limited resource)

Greedy shortcut construction model
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Structures emerged from randomly distributed vertices on unit squares
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FIG. 3: The topological properties of emerged network structures for several different cutoff values

of lmax, in case of GSNH, where N = 102. Time series of performance and total edge length is

shown (a), where the black horizontal lines correspond to lmax values used in (b)–(f). The others

are degree distribution (b), position centrality of vertices as functions of degree (c), connection

probability of vertex pairs as functions of Euclidean distance (d), average clustering coefficient for

vertices with given degree (e), and average vertex navigator centrality for vertices with given degree

(f), depending on the change of lmax values.

blocks, the square blocks rather than triangular blocks prevail. However, it is important to

note that such a simple objective function based on navigability can generate the local block

structures. Those triangular structures are indeed observed in reality, such as historical

centers of cities built by a pedestrian strategy [19, 20]. Such a difference is shown to be even

more prominent when we remove the no-crossing rule, which will be discussed in Sect. III C.

Another geometric aspect of the optimized networks is seen by observing the distribu-

tions of area enclosed by edges and the angles by adjacent edges for vertices, i.e., the angles

between adjacent roads at the intersections. We observe that both the enclosed area distri-

bution and angle distribution are notably distinguishable depending on the metrics used as

shown in Fig. 7. For hopping-distance based strategies, more heterogeneous enclosed area

distributions compared to the Euclidean-distance based strategies are observed (Fig. 7(a)).

In addition, very sharp angles (Fig. 7(b)) are abundant due to the existence of hubs (see
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FIG. 4: The topological properties of emerged network structures for several different cutoff values

of lmax, as in Fig. 3, in case of SPNH.
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FIG. 5: The topological properties of emerged network structures for several different cutoff values

of lmax, as in Fig. 3, in case of GSNE.

Fig. 2 as well for examples), and the tendency is slightly more significant in SPNH than

GSNH. On the other hand, the angles are distributed around ! 60◦, the characteristic an-

gle of the regular triangle for Euclidean-distance based GSNE and SPNE. Therefore, the

enclosed area and angle distributions also indicate the emergence of relatively more regular
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FIG. 6: The topological properties of emerged network structures for several different cutoff values

of lmax, as in Fig. 3, in case of SPNE.

TABLE III: The clustering coefficient based on the number of triangles (C!), compared to the

random counterpart (Cr = 2M/N2, where N and M are the numbers of vertices and edges,

respectively).

method C! Cr C!/Cr

GSNH 1.04× 10−1 3.20 × 10−2 3.26

GSNE 1.89× 10−1 3.66 × 10−2 5.15

SPNH 6.29× 10−2 2.98 × 10−2 2.11

SPNE 1.56× 10−1 3.44 × 10−2 4.53

triangular structures with uniform enclosed area for GSNE and SPNE.

C. Remarks on the no-crossing rule for edges

So far, we have not allowed the crossing between edges in the construction process since

we consider such a crossing as effectively generating a new junction or vertex. What if there

is no such rule? If we allow edge-crossing, star-graph-like structures are naturally emerged

for SPNH as shown in Fig. 8(c), which leads to the “condensation” in terms of degree, as

the bimodal distribution for lmax = 12, 16, and 20 shown in Fig. 9(b) [21]. Interestingly,

10
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FIG. 7: The distributions of area enclosed by edges (a) and the angles for the intersections (vertices)

(b), in the optimized structure for each navigability (N = 102 and lmax = 20).

FIG. 8: Example structures of model networks for GSNH (a), GSNE (b), SPNH (c), and SPNE (d),

if edge-crossing is allowed, starting from the same randomly distributed 102 vertices (lmax = 20)

as in Fig. 2.

this severe condensation is not observed in case of GSNH, as shown in Figs. 8(a) and 9(a)

(power-law-like fat tailed distribution but no condensation). The no-crossing rule, therefore,

effectively prevents such a condensation for SPNH, while no such explicit rule is necessary for

GSNH, because the consideration of greedy navigators itself naturally avoid such condensed

situations and allows the local hubs.

Finally, we remark that our simple model does not take into account the realistic number

of connected roads for junctions (degree in the notion of graphs), which is between 2.1 and

11
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Role of no-crossing rule

• If “crossing” is allowed,
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“edge condensation” for 
shortest path routing!

same initial locations for vertices
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Role of no-crossing rule

• If “crossing” is allowed,

GSNHSPNH

“edge condensation” for 
shortest path routing!

no such condensation for 
greedy spatial navigation!

“local hubs” naturally emerged from
considering greedy navigators,
WITHOUT NO-CROSSING RULE

SHL and P. Holme, arXiv:1205.0537 (Eur. Phys. J.-Spec. Top., in press)

same initial locations for vertices



If we’re designers/architects of systems … (Part II)

• How to optimize the network layout for “greedy and 
smart” navigator with GSN strategy?

• initial configuration: randomly distributed vertices (and edges attached to 
them) on 2D space inside the unit square, for a given network topology

• simulated annealing
• trial movement: choose a random vertex with the coordinates (x0, y0)

• calculate the average (hopping-distance-based) GSN pathway dg, which is 
the object function to be minimized

• accept the movement if dg is decreased, or with probability p otherwise
• with p = phigh (heating) & p = plow (quenching) repeatedly

• record the layout with the minimum dg value

Layout optimization based on simulated  annealing

(x0, y0) ! (x0 + �x, y0 + �y) where �x and �y are uniformly randomly

drawn from the interval [�l, l]

dg (t = 0)
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• How to optimize the network layout for “greedy and 
smart” navigator with GSN strategy?

• initial configuration: randomly distributed vertices (and edges attached to 
them) on 2D space inside the unit square, for a given network topology

• simulated annealing
• trial movement: choose a random vertex with the coordinates (x0, y0)

• calculate the average (hopping-distance-based) GSN pathway dg, which is 
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• accept the movement if dg is decreased, or with probability p otherwise
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Kamada-Kawai (KK) spring layout vs GSN-pathway-optimized layout2

vex

(a) (b)

FIG. 1: (color online) Examples of the optimal (a) and KK layout (b)
of the BA model. The GSN pathway is 3.85 (4.79) for the optimal
(KK) layout, respectively.
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tion [7]. The trial movement in the heating process is repeated
for TH times in the unit of Monte Carlo (MC) steps, where
one step is defined as N (the number of vertices) trial move-
ment. On the other hand, in the quenching process, the trial
movement is repeated until consecutive TL times (again, in the
unit of MC steps) of rejection occurs. Overall, these consec-
utive heating and quenching processes as a single session are
repeated THL times in total. Finally, during this procedure,
the layout Lmin corresponding to the minimum dg value up to
present is recorded and constantly updated if a new minimum
dg occurs. With the method, after the SA procedure ends, we
obtain the approximated optimal layout for GSN up to the mo-
ment.

III. RESULTS

To start our exploration, we set l = 10, phigh = 0.2,
plow = 0 (completely frozen phase), TH = 500, TL = 100, and
THL = 10. Due to the computational complexity we present
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the results using the graphs with rather small sizes: N = 50,
in case of Barabási–Albert (BA) [8], Holme–Kim (HK) [9],
Watts–Strogatz (WS) [10] model graphs, where the average
degree is set as k̄ = 2 for BA and HK and k̄ = 4 for WS
graphs (triangle formation probability for HK model is 1 and
the rewiring probability for WS model is 0.1). As an exam-
ple of real-world graph, we analyze the social network of the
oft-studied Zachary karate club with N = 34 [11]. As repre-
sentative examples of completely regular structures, the two-
dimensional square lattice (2D square) with the open bound-
ary condition with N = 7 ⇥ 7 = 49 and the one-dimensional
ring (1D ring) with N = 50 and k = 2 (connected only with
the nearest neighbors) are analyzed as well. A typical exam-
ple of Lmin and time series of dg in case of the BA model is
illustrated in Figs. 1(a) and 2.

In our further analysis we first investigate the angle (defined
as the undivided angles between edge pairs attached to each
vertex—in Fig. 1 this is means we include ✓1 and ✓2 but not
✓1 + ✓2) distributions of optimal layouts for GSN, in compari-
son to the spring-embedding Kamada–Kawai (KK) layout for
the purpose of visualization [12], as shown in Fig. 3. An ex-
ample of Lmin and time series of dg in case of the KK layout
is shown in Figs. 1(b) and 2. Even if it is demonstrated that
the KK layout is helpful for GSN compared to the random
navigation [4], the optimal layout shows significantly di↵er-
ent angular profiles to the ones in KK layout. In particular,
much sharper angles dominate the former case, in contrast to
the latter case composed of a certain range of characteristic
angles for better visualization. Among the optimized layouts,
the graphs with hubs (vertices with large numbers of neigh-
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corresponding intermediate points ( f = 1/4, 1/2 and 3/4) equally
spaced in the straight line (red line). The deviation for each inter-
mediate point is defined as the Euclidean distance between the two
points (blue dashed lines), in the unit of the straight line.
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to the amount of embedded geometric information [4]. The
circular trajectories of GSN pathways in the 1D ring case are
clearly reflected in the concave curves of dev( f ) and dev?( f )
and the slightly negative (positive) devk( f ) for small (large) f ,
respectively, for both optimized and KK layouts. It would be
interesting if we adopt the alternative definition of path length,
for instance, the sum of Euclidean distance along the path [13]
and compare the results.

IV. SUMMARY AND DISCUSSIONS

We have investigated the properties of optimized spatial
graph layouts for GSN generated by a simple SA process.
From the observed geometrical measures, it is shown that,
in general, the optimized layouts are characterized by sharp
angles and point of ine�ciency in the middle of the GSN pro-
cesses. These properties are qualitatively di↵erent from the
layouts for better visualization, namely the KK ones, show-
ing the dominating intermediate angles within characteristics
ranges. A closer inspection of the navigational routes also re-
veals that the ine�ciency of KK layouts soon follows its ini-
tially better performance compared to the optimized ones. In
other words, our simulation shows that it is possible to gener-

ate GSN-friendly layouts other than the visualization-friendly
layouts by just taking the simple SA optimization process.

Our simple SA optimization process, however, also shows
its limitation by yielding the suboptimal results for completely
regular structures such as the 1D ring and 2D square lattice,
where the KK layouts happen to coincide with the exact solu-
tion of optimization for GSN. The SA optimization certainly
gets close to the exact optimal layout, but not perfectly, at
least in our simulation setting. Besides such possible subop-
timal performances, the observed properties of optimized lay-
outs for better navigation can, we believe, give valuable hints
for constructing various spatial structures in practice, e.g., the
urban planning and architecture [14]. Adopting more sophis-
ticated optimization processes and studies on diverse graph
structures would be a natural candidate for the future work,
for even better understanding of the tripartite relationship of
topology-geometry-navigability.
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User-centric approach in architecture

• Lost in buildings? Why are some buildings hard to “navigate?”

Seattle Central Library

It might look very cool, but
it might feel like a maze for
general public/greedy navigators!



Now, I’m here in Oxford, with this road network data from 100 cities . . .



Now, I’m here in Oxford, with this road network data from 100 cities . . .

A nice example set (or “testbed”) of spatial networks



Now, I’m here in Oxford, with this road network data from 100 cities . . .

A nice example set (or “testbed”) of spatial networks



Now, I’m here in Oxford, with this road network data from 100 cities . . .

A nice example set (or “testbed”) of spatial networks



Now, I’m here in Oxford, with this road network data from 100 cities . . .

A nice example set (or “testbed”) of spatial networks



Core-periphery structure of networks
• structural core-periphery

• M. P. Rombach et al., arXiv:1202.2684 (and references therein).
• based on the structural definition: “core nodes tend to be connected to core 
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could be “optimal path” considering the weighted edges

could be edges



P-SCORE for nodes and edges, considering the shortest path minimizing the sum of Euclidean distances



P-SCORE for nodes and edges, considering the shortest path minimizing the sum of Euclidean distances

correlation btw P-SCORE and betweenness
 = 0.168 (Pearson), 0.374 (Spearman)

correlation btw P-SCORE and betweenness
 = 0.278 (Pearson), 0.478 (Spearman)

correlation btw P-SCORE and betweenness
 = 0.139 (Pearson), 0.322 (Spearman)

correlation btw P-SCORE and betweenness
 = 0.247 (Pearson), 0.435 (Spearman)

correlation btw P-SCORE and betweenness
 = 0.103 (Pearson), 0.329 (Spearman)



Fungal network data: another transportation networks! (provided by Mark Fricker & Dan Fenn)

ref) L. Heaton et al., Phys. Rev. E 86, 021905 (2012); Proc. R. Soc. B 277, 3265 (2012); Fungal Biology Reviews 26, 12 (2012).



Fungal network data: another transportation networks! (provided by Mark Fricker & Dan Fenn)

A. Tero et al., Science 327, 439 (2010).

ref) L. Heaton et al., Phys. Rev. E 86, 021905 (2012); Proc. R. Soc. B 277, 3265 (2012); Fungal Biology Reviews 26, 12 (2012).



P-SCORE for nodes and edges, considering the optimal path maximizing the sum of “conductance”

and more . . . (518 networks in total)



Dendrogram of road networks, based on the mesoscopic response function (MRF) analysis

ref) J.-P. Onnela, D. J. Fenn, S. Reid, M. A. Porter, P. J. Mucha, M. D. Fricker, and N. S. Jones, Phys. Rev. E 86, 036104 (2012).



Summary and Outlook

• greedy navigation: a more realistic approach, exploiting local geometric 
information

• modified centrality measures
• “Braess edge” phenomenon due to greediness

• properties of greedy-navigation-friendly network topology (shortcut 
construction) or geometry (layout optimization)

• data: 100 road networks, 518 fungal networks, etc. (any suggestion or 
donation? ;)

• core-periphery structure
• other mesoscopic properties (e.g., “taxonomy” analysis)
• . . .
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