Exploring road networks with greedy navigators and their core-periphery structures

in collaboration with Petter Holme (Umeå/Sungkyunkwan/Stockholm Univ.) & Mason A. Porter (OCIAM, Univ. of Oxford)

SHL & P. Holme, Physica A 390, 3996 (2011); Phys. Rev. Lett. 108, 128701 (2012); arXiv:1205.0537 (Eur. Phys. J.-Spec. Top., in press); arXiv:1206.6651.

"Which information does human being use?"

"Which information does human being use?"

"cognitive map" (map in mind/brain) simple organisms also use chemotaxis to find the target

"Which information does human being use?"

"cognitive map" (map in mind/brain) simple organisms also use chemotaxis to find the target

Simplify! (distance/directional information)

spatial network on 2D

Big picture

amount of "useful" information

Big picture

amount of "useful" information

Big picture

amount of "useful" information

- "moving to the neighbor closest to the target"-strategy
- limitation: it sometimes fails, due to the possibility of being trapped

Note: look at the graph as shown in the 2D (Euclidean) space!

- "moving to the neighbor closest to the target"-strategy
- limitation: it sometimes fails, due to the possibility of being trapped

Note: look at the graph as shown in the 2D (Euclidean) space!

- "moving to the neighbor closest to the target"-strategy
- limitation: it sometimes fails, due to the possibility of being trapped

Note: look at the graph as shown in the 2D (Euclidean) space!

- "moving to the neighbor closest to the target"-strategy
- limitation: it sometimes fails, due to the possibility of being trapped

Note: look at the graph as shown in the 2D (Euclidean) space!

Greedy Spatial Navigation (GSN) protocol

Greedy Spatial Navigation (GSN) protocol

"biased" depth-first search (DFS) movement, based on direction: to the **unvisited** neighbor whose direction (from the current vertex) closest to the direction to the target!

Greedy Spatial Navigation (GSN) protocol

"biased" depth-first search (DFS) movement, based on direction: to the **unvisited** neighbor whose direction (from the current vertex) closest to the direction to the target!

Greedy Spatial Navigation (GSN) protocol

"biased" depth-first search (DFS) movement, based on direction: to the **unvisited** neighbor whose direction (from the current vertex) closest to the direction to the target!

"backtracking" to the deepest level above with an available vertex to step down on is possible, if it's stuck (finding the next-best way from there) DFS ≠ self-avoiding walk

Greedy Spatial Navigation (GSN) protocol

"biased" depth-first search (DFS) movement, based on direction: to the **unvisited** neighbor whose direction (from the current vertex) closest to the direction to the target!

"backtracking" to the deepest level above with an available vertex to step down on is possible, if it's stuck (finding the next-best way from there) DFS ≠ self-avoiding walk

Greedy Spatial Navigation (GSN) protocol

"biased" depth-first search (DFS) movement, based on direction: to the **unvisited** neighbor whose direction (from the current vertex) closest to the direction to the target!

"backtracking" to the deepest level above with an available vertex to step down on is possible, if it's stuck (finding the next-best way from there) DFS ≠ self-avoiding walk

> greedy but (and?) smart navigator!

Greedy Spatial Navigation (GSN) protocol

"biased" depth-first search (DFS) movement, based on direction: to the **unvisited** neighbor whose direction (from the current vertex) closest to the direction to the target!

"backtracking" to the deepest level above with an available vertex to step down on is possible, if it's stuck (finding the next-best way from there) DFS ≠ self-avoiding walk

> greedy but (and?) smart navigator!

Greedy Spatial Navigation (GSN) protocol

random DFS ...

"biased" depth-first search (DFS) movement, based on direction: to the **unvisited** neighbor whose direction (from the current vertex) closest to the direction to the target!

"backtracking" to the deepest level above with an available vertex to step down on is possible, if it's stuck (finding the next-best way from there) DFS ≠ self-avoiding walk

> greedy but (and?) smart navigator!

Greedy Spatial Navigation (GSN) protocol

random DFS ...

"biased" depth-first search (DFS) movement, based on direction: to the **unvisited** neighbor whose direction (from the current vertex) closest to the direction to the target!

"backtracking" to the deepest level above with an available vertex to step down on is possible, if it's stuck (finding the next-best way from there) DFS ≠ self-avoiding walk

> greedy but (and?) smart navigator!

Kamada-Kawai (KK) spring-based graph layout It looks good! (to human eyes)

Kamada-Kawai (KK) spring-based graph layout It looks good! (to human eyes)

side(?) effect: vertices closer in graphs tend to be located closer in (2D) geometric space as well!

Kamada-Kawai (KK) spring-based graph layout It looks good! (to human eyes)

side(?) effect: vertices closer in graphs tend to be located closer in (2D) geometric space as well!

So, does the layout algorithm really help GSN?

Barabási-Albert model (purely topological)

Holme-Kim model (topological, with non-vanishing clustering)

Watts-Strogatz model (based on 1D ring)

Kamada-Kawai (KK) spring-based graph layout It looks good! (to human eyes)

side(?) effect: vertices closer in graphs tend to be located closer in (2D) geometric space as well!

So, does the layout algorithm really help GSN?

Kamada-Kawai (KK) spring-based graph layout It looks good! (to human eyes)

side(?) effect: vertices closer in graphs tend to be located closer in (2D) geometric space as well!

So, does the layout algorithm really help GSN?

SHL and P. Holme, Physica A 390, 3996 (2011).

Boston road

New York road

Switzerland railway

TABLE I: Properties of four empirical datasets. Performance of routing strategies for road and railway networks. For each network, the number of vertices N, the number of edges M, the average path length for GSN strategy d_g , real shortest path d, random DFS d_r , and navigability $v = d/d_g$ are shown in each column. Null models for Boston and New York roads are connected Erdős-Rényi random graphs [17] with the same N and M, where the geographic layout is given by Kamada-Kawai algorithm [15], and the results averaged over 10^3 samples are shown.

	network	N	Μ	d_g	d	d_r	ν
	Boston	88	155	6.82	5.72	30.75	84%
n	ull model			8.606(9)	23.20(1)	3.6758(1)	37 %
I	New York	125	217	8.27	6.79	44.39	82%
n	ull model			11.72(2)	33.51(2)	4.0300(1)	34 %
Sv	vitzerland	1613	1680	145.14	46.56	769.68	32%
	Europe	4853	5765	143.69	50.87	2011.93	35%

Switzerland railway

(a)

TABLE I: Properties of four empirical datasets. Performance of routing strategies for road and railway networks. For each network, the number of vertices N, the number of edges M, the average path length for GSN strategy d_g , real shortest path d, random DFS d_r , and navigability $v = d/d_g$ are shown in each column. Null models for Boston and New York roads are connected Erdős-Rényi random graphs [17] with the same N and M, where the geographic layout is given by Kamada-Kawai algorithm [15], and the results averaged over 10^3 samples are shown.

	network	N	Μ	d_g	d	d_r	ν
	Boston	88	155	6.82	5.72	30.75	84%
n	ull model			8.606(9)	23.20(1)	3.6758(1)	37 %
I	New York	125	217	8.27	6.79	44.39	82%
n	ull model			11.72(2)	33.51(2)	4.0300(1)	34 %
Sv	vitzerland	1613	1680	145.14	46.56	769.68	32%
	Europe	4853	5765	143.69	50.87	2011.93	35%

Switzerland railway

(a)

TABLE I: Properties of four empirical datasets. Performance of routing strategies for road and railway networks. For each network, the number of vertices N, the number of edges M, the average path length for GSN strategy d_g , real shortest path d, random DFS d_r , and navigability $v = d/d_g$ are shown in each column. Null models for Boston and New York roads are connected Erdős-Rényi random graphs [17] with the same N and M, where the geographic layout is given by Kamada-Kawai algorithm [15], and the results averaged over 10^3 samples are shown.

Doct							
DOSU	network	N	Μ	d_g	d	d_r	ν
	Boston	88	155	6.82	5.72	30.75	84%
	null model			8.606(9)	23.20(1)	3.6758(1)	37 %
	New York	125	217	8.27	6.79	44.39	82%
	null model			11.72(2)	33.51(2)	4.0300(1)	34 %
	Switzerland	1613	1680	145.14	46.56	769.68	32%
1	Europe	4853	5765	143.69	50.87	2011.93	35%
quite efficient strategy for these real transport networks							
				1	•		
C		-					

Switzerland railway

(a)

GSN works in a maze!

Maze in Leeds Castle, Kent, England

real shortest path shown in filled vertices (d = 52 steps) GSN pathway ($d_g = 87$ steps) shown in arrows average random DFS pathway ($d_r = 134(1)$ steps)

GSN works in a maze!

real shortest path shown in filled vertices (d = 52 steps) GSN pathway ($d_g = 87$ steps) shown in arrows average random DFS pathway ($d_r = 134(1)$ steps)

Maze in Leeds Castle, Kent, England New centrality based on GSN: Navigator Centrality *n* for vertex/edge

> vertex Navigator Centrality $n(v) \sim \sum_{i \neq j} \sigma_{ivj}^{V}$ $\sigma_{ivi}^{V} = 1$ if GSN path goes from *i* to *j* via *v*, 0 otherwise

edge Navigator Centrality $n(l) \sim \sum_{i \neq j} \sigma_{ilj}^{E}$

 $\sigma_{ili}^{E} = 1$ if GSN path goes from *i* to *j* via *l*, 0 otherwise

New centrality based on GSN: Navigator Centrality *n* for vertex/edge

New centrality based on GSN: Navigator Centrality *n* for vertex/edge

> vertex Navigator Centrality $n(v) \sim \sum_{i \neq j} \sigma_{ivj}^{V}$ $\sigma_{ivi}^{V} = 1$ if GSN path goes from *i* to *j* via *v*, 0 otherwise

edge Navigator Centrality $n(l) \sim \sum_{i \neq j} \sigma_{ilj}^{E}$

 $\sigma_{ili}^{E} = 1$ if GSN path goes from *i* to *j* via *l*, 0 otherwise

Navigator centralities for roads

navigator centrality vs betweenness centrality: "vertex/edge profile"

H. Youn, M. Gastner, and H. Jeong, Phys. Rev. Lett. 101, 128701 (2008).

Quantifying this property: edge Essentiality *e* for edge

edge Essentiality

 $e(l) = aGPL(G \setminus \{l\}) - aGPL(G)$ where aGPL = average GSN path length Quantifying this property: edge Essentiality e for edge

edge Essentiality

 $e(l) = aGPL(G \setminus \{l\}) - aGPL(G)$ where aGPL = average GSN path length

e(l) > 0: the removal of ldeteriorates the navigability \rightarrow "normal" edge l e(l) < 0: the removal of *l* enhances the navigability \rightarrow "Braess" edge *l* (from Braess's paradox)

Edge essentiality for roads

edge essentiality vs edge betweenness

Edge essentiality for roads

J. F. Kennedy St. (adjacent to Anderson Memorial Bridge)

edge essentiality vs edge betweenness

Is it possible to predict *e* or "Braessiness" from other topological/geometric characteristics?

TABLE II: Coefficients for the multiple linear regression $e = m_1b + m_2(\text{length}) + m_3c + m_4(k_ik_j) + m_5\theta$ for road networks, with some measures defined on edges: *b* (the edge betweenness), the edge length, the distance *c* from the midpoint of edges to the centroid of vertices, the product k_ik_j of degrees of vertices attached to edges, and the angle θ between edges and principal flow direction in Eq. (6). The statistical significance codes are \diamond : < 0.1, *: < 0.05, **: < 0.01, and * **: < 0.001.

road	Boston	New York
m_1	6.938***	8.864***
m_2	$-4.597 \times 10^{-5*}$	$-4.139 \times 10^{-5^{\circ}}$
m_3	-1.573×10^{-6}	$1.925 \times 10^{-5*}$
m_4	$-8.772 \times 10^{-3^{**}}$	$-5.721 \times 10^{-3^{\circ}}$
m_5	1.219×10^{-2}	$3.202 \times 10^{-2^{\circ}}$
multiple R^2	0.2520	0.2059
p-value	2.695×10^{-8}	2.242×10^{-9}

Is it possible to predict *e* or "Braessiness" from other topological/geometric characteristics?

TABLE II: Coefficients for the multiple linear regression $e = m_1b + m_2(\text{length}) + m_3c + m_4(k_ik_j) + m_5\theta$ for road networks, with some measures defined on edges: *b* (the edge betweenness), the edge length, the distance *c* from the midpoint of edges to the centroid of vertices, the product k_ik_j of degrees of vertices attached to edges, and the angle θ between edges and principal flow direction in Eq. (6). The statistical significance codes are \diamond : < 0.1, *: < 0.05, **: < 0.01, and * **: < 0.001.

 road	Boston		New York		
m_1	6.938** 4 507 × 1	e hea	avily depends on ve	ry specific	
m_2 m_3	-4.597×1 -1.573×1	geon	netric arrangements	s, so it is no Iv from	ot
m_4	-8.772×1	othe	r network characte	eristics!	
m_5	$1.219 \times 1_{\odot}$		J.202 A 10		
multiple R^2	0.2520		0.2059		
p-value	2.695×10	-8	2.242×10^{-9}		

Let's get more **systematic and reliable data**! (unit area, uniform criterion for selecting roads, etc.)

Bruxelles Brussel

Overview

Introduction

Merkaartor is an O OpenStreetMap editor for Unix, Windows and Mac OS X (prerelease, Intel only), distributed under the GNU General Public License.

- Download
- Documentation
- Have a look at the list of authors
- · You are welcome to donate. Thanks to those who already did.

Repository Files

Merkaartor

- GIS for Dummies (written by a dummy)
- Development
- Compiling
- Screenshots
- FAQ
- Need help? Contact us

Features

Merkaartor has some unique features such as...

- Map view near-WYSIWYG, anti-aliased, with road names
- Transparent display of O map features like roads, amenities and areas
- Style editor for the map display, including multiple styles
- · Support for handling separated highways
- Easy download and upload of OpenStreetMap data
- Render an area with the current style (SVG or Bitmap)
- Native application (developed with the Qt4 toolkit)
- Import ∂ NMEA files
- Live connection to your GPS
- Experimental mobile device support (Pocket PCs)
- · View your GPS tracks and geotagged photos without the need to upload them
- Easy use of Walking Papers

480px-Merkaartor_0.17_sample.png - Merkaartor 0.17 sample (151.4 kB) Chris Browet, 12/26/2010 02:36 pm

Powered by Redmine © 2006-2010 Jean-Philippe Lang

Wiki

Forums

the first step to get the road network data with Merkaartor: New York city case

the first step to get the road network data with Morkaartor New York city case

<tag k="lit" v="ves"/> <tag k="maxspeed" v="30"/> <tag k="name" v="Eteläranta"/> <tag k="name:fi" v="Eteläranta"/> <tag k="name:sv" v="Södra Kajen"/> <tag k="oneway" v="yes"/> <tag k="parking:condition:both" v="ticket"/> <tag k="parking:condition:both:default" v="free"/> <tag k="parking:condition:both:time interval" v="Mo-Fr 09:00-19:00"/> <tag k="parking:condition:residents" v="C"/> <tag k="parking:lane:both" v="inline"/> <tag k="parking:lane:both:inline" v="on street"/> <tag k="parking:ticket:zone" v="1"/> <tag k="snowplowing" v="yes"/> <tag k="surface" v="cobblestone"/> </way>

<way id="123810054"> <nd ref="1379403034"/> <nd ref="1304580832"/> <nd ref="1379403024"/> <nd ref="1379403014"/> <nd ref="1379403013"/> <nd ref="1379403023"/> <nd ref="1379403032"/> <nd ref="1379403036"/> <nd ref="1379403049"/> <nd ref="1379403042"/> <nd ref="1379403041"/> <nd ref="1379403031"/> <nd ref="1379403022"/> <nd ref="1379403012"/> <nd ref="1379403005"/> <nd ref="1379402996"/> <nd ref="1379402995"/> <nd ref="1379402989"/> <nd ref="1379402981"/> <nd ref="1379402975"/> <nd ref="1379402958"/> <nd ref="1379402935"/> <nd ref="1304580746"/> <nd ref="265493148"/> <nd ref="1379402896"/> <nd ref="1379402831"/> <nd ref="1379402827"/> <nd ref="1379402807"/> <nd ref="1379402804"/>

ref= 1379402794 / 🛛

<nd ref="1379402800"/>

<nd ref="1379402800"/> <nd ref="1379402794"/>

the first step to get the road network data with Morkaartor: New York city case

<nd ref="1376344657"/> <tag k="highway" v="residential"/>

detect road patterns

<tag k="oneway" v="yes"/> <tag k="parking:condition:both" v="ticket"/> <tag k="parking:condition:both:default" v="free"/> <tag k="parking:condition:both:time interval" v="Mo-Fr 09:00-19:00"/> <tag k="parking:condition:residents" v="C"/> <tag k="parking:lane:both" v="inline"/> <tag k="parking:lane:both:inline" v="on street"/> <tag k="parking:ticket:zone" v="1"/> <tag k="snowplowing" v="yes"/> <tag k="surface" v="cobblestone"/> </way> <way id="123810054"> <nd ref="1379403034"/> <nd ref="1304580832"/> <nd ref="1379403024"/> <nd ref="1379403014"/> <nd ref="1379403013"/> <nd ref="1379403023"/> <nd ref="1379403032"/> <nd ref="1379403036"/> <nd ref="1379403049"/> <nd ref="1379403042"/> <nd ref="1379403041"/> <nd ref="1379403031"/> <nd ref="1379403022"/> ref="1379403012"/> <nd ref="1379403005"/> <nd ref="1379402996"/> <nd ref="1379402995"/> <nd ref="1379402989"/> <nd ref="1379402981"/> <nd ref="1379402975"/> <nd ref="1379402958"/> <nd ref="1379402935"/>

ref='1379402794'/>

<nd ref="1304580746"/> <nd ref="265493148"/> <nd ref="1379402896"/> <nd ref="1379402831"/> <nd ref="1379402827"/> <nd ref="1379402807"/> <nd ref="1379402804"/> <nd ref="1379402800"/> <nd ref="1379402800"/> <nd ref="1379402794"/>

No satellites

Dataset: 20 largest cities in the US, Europe, Asia, Latin America, and Africa (100 cities in total)

US/Austin US/Charlotte US/Chicago US/Columbus US/Dallas US/Detroit US/EIPaso US/FortWorth US/Houston US/Indianapolis US/Jacksonville US/LosAngeles US/Memphis US/NewYork US/Philadelphia US/Phoenix **US/SanAntonio US/SanDiego** US/SanFrancisco Europe/Vienna **US/SanJose**

Europe/Barcelona Asia/Bangkok **Europe/Berlin Europe/Brussels** Europe/Bucharest Asia/Dhaka **Europe/Budapest Europe/Hamburg** Europe/London **Europe/Lyon Europe/Madrid Europe/Marseille Europe/Milan Europe/Munich Europe/Naples Europe**/Paris **Europe/Prague Europe/Rome Europe/Sofia Europe/Valencia** Europe/Warsaw

Asia/Beijing Asia/Delhi Asia/HongKong Asia/Jakarta Asia/Karachi Asia/Kolkata Asia/Manila Asia/Mumbai Asia/Nagoya Asia/Osaka Asia/Seoul Asia/Shanghai Asia/Shenzhen Asia/Taipei Asia/Tehran Asia/Tokyo Asia/Wuhan

LatinAmerica/BeloHorizonte Africa/Abidjan LatinAmerica/Bogota LatinAmerica/Brasilia LatinAmerica/BuenosAires Asia/Guangzhou LatinAmerica/Caracas LatinAmerica/Fortaleza LatinAmerica/Guadalajara LatinAmerica/Guayaquil LatinAmerica/Lima LatinAmerica/Maracaibo LatinAmerica/Medellin LatinAmerica/MexicoCity LatinAmerica/Monterrey LatinAmerica/PortoAlegre LatinAmerica/Recife LatinAmerica/RioDeJaneiro LatinAmerica/Salvador LatinAmerica/Santiago LatinAmerica/SantoDomingoAfrica/Pretoria LatinAmerica/SaoPaulo

Africa/Accra Africa/AddisAbaba Africa/Alexandria **Africa/Algiers** Africa/Cairo Africa/CapeTown Africa/Casablanca Africa/Dakar Africa/DarEsSalaam Africa/Durban Africa/Ibadan Africa/Johannesburg Africa/Khartoum Africa/Kinshasa Africa/Lagos Africa/Luanda Africa/Nairobi **Africa/Tunis**

 d/d_g vs d/d_r profile for 100 large cities (2 km*2 km samples)

- *d*: real shortest path length
- d_g : GSN path length
- *d_r*: random DFS path length

d/d_g compared to d/d_r : measure of navigability

 d/d_g vs d/d_r profile for 100 large cities (2 km*2 km samples)

 d/d_g vs d/d_r profile for 100 large cities (2 km*2 km samples)

diverse values for d/d_g vs clear scaling for d/d_r : d/d_g shows the real characteristics of city structures

Ranked cities based on d/d_g

SHL and P. Holme	, Phys. Rev.	Lett. 108,	128701	(2012)
------------------	--------------	------------	--------	--------

rank	city	d/d_g
1	Guayaquil	0.87153475
2	Dallas	0.751327251
3	Khartoum	0.750326569
4	Johannesburg	0.646588605
5	Kinshasa	0.643906117
6	Los Angeles	0.635007285
7	Pretoria	0.625790442
8	New York	0.594814987
9	Nagoya	0.590465551
10	Recife	0.581970088
11	Guadalajara	0.580433974
12	Fort Worth	0.569207094
13	Wuhan	0.551891422
14	Lima	0.550886837
15	Cairo	0.544213047
16	Mumbai	0.541609353
17	Tehran	0.539319224
18	Abidjan	0.532253231
19	Maracaibo	0.525445466
20	Shenzhen	0.522871912
21	Jakarta	0.522273008
22	San Francisco	0.518447496
23	Naples	0.51226827
24	Dakar	0.511954476
25	Durban	0.509738578
26	Dar es Salaam	0.509059056
27	Sao Paulo	0.505905555
28	Medellin	0.505887074
29	Kolkata	0.499531424
30	Lyon	0.485799194
31	Budapest	0.484988332
32	Luanda	0.476971656
33	Columbus	0.472754382
34	Barcelona	0.467556084
35	Karachi	0.466714526

36	Caracas	0.463537945
37	Rio de Janeiro	0.462997416
38	Ibadan	0.461537277
39	Charlotte	0.450666431
40	Indianapolis	0.448876406
41	Santiago	0.441916028
42	Mexico City	0.434675377
43	Sofia	0.434447746
44	Philadelphia	0.421522638
45	Casablanca	0.418701767
46	Guangzhou	0.417294581
47	Houston	0.39869371
48	Lagos	0.397973175
49	Santo Domingo	0.393599977
50	Alexandria	0.391348225
51	Delhi	0.390437031
52	Taipei	0.386707203
53	Bogota	0.376506648
54	Manila	0.370664996
55	Buenos Aires	0.367060505
56	Porto Alegre	0.364351628
57	Osaka	0.360996708
58	Tokyo	0.360566814
59	Marseille	0.359403937
60	Bucharest	0.355247549
61	Jacksonville	0.350364823
62	Accra	0.344701237
63	Nairobi	0.33843625
64	El Paso	0.338130399
65	Monterrey	0.320958348
66	Cape Town	0.320270326
67	Memphis	0.317301402
68	Seoul	0.316102892
69	Beijing	0.313137426
70	Belo Horizonte	0.30973628
71	Dhaka	0.309330927
72	Addis Ababa	0.304048152

73	Bangkok	0.299254306
74	Brasilia	0.299090784
75	Algiers	0.287942921
76	Fortaleza	0.277673424
77	Salvador	0.2479511
78	Shanghai	0.244778393
79	San Jose	0.236622937
80	Hong Kong	0.235434556
81	Valencia	0.231731821
82	Vienna	0.226759618
83	Madrid	0.211601578
84	Rome	0.21040621
85	Detroit	0.194525563
86	Warsaw	0.161307412
87	Tunis	0.155626232
88	Milan	0.15375989
89	Chicago	0.146330524
90	Phoenix	0.141044953
91	London	0.136564567
92	San Diego	0.119215411
93	Munich	0.119165581
94	Brussels	0.114166163
95	San Antonio	0.108783428
96	Berlin	0.100183015
97	Hamburg	0.08422761
98	Paris	0.083574313
99	Austin	0.0826651
100	Prague	0.077063185

Ranked cities based on d/d_{α}

rank	city	d/d_g
1	Guayaquil	0.87153475
2	Dallas	0.751327251
3	Khartoum	0.750326569
4	Johannesburg	0.646588605
5	Kinshasa	0.643906117
6	Los Angeles	0.635007285
7	Pretoria	0.625790442
8	New York	0.594814987
9	Nagoya	0.590465551
10	Recife	0.581970088
11	Guadalajara	0.580433974
12	Fort Worth	0.569207094
13	Wuhan	0.551891422
14	Lima	0.550886837
15	Cairo	0.544213047
16	Mumbai	0.541609353
17	Tehran	0.539319224
18	Abidjan	0.532253231
19	Maracaibo	0.525445466
20	Shenzhen	0.522871912
21	Jakarta	0.522273008
22	San Francisco	0.518447496
23	Naples	0.51226827
24	Dakar	0.511954476
25	Durban	0.509738578
26	Dar es Salaam	0.509059056
27	Sao Paulo	0.505905555
28	Medellin	0.505887074
29	Kolkata	0.499531424
30	Lyon	0.485799194
31	Budapest	0.484988332
32	Luanda	0.476971656
33	Columbus	0.472754382
34	Barcelona	0.467556084
35	Karachi	0.466714526

Synopsis: Greed is Good

Exploring Maps with Greedy Navigators Sang Hoon Lee and Petter Holme *Phys. Rev. Lett.* **108**, 128701 (2012) Published March 22, 2012

Many a tourist has, perhaps happily, gotten lost in the twists and turns along the way to Venice's Piazza San Marco. How navigable a city is—or could be with an extra footbridge or better-placed signs—is something network models try to quantify. Now, writing in *Physical Review Letters*, two scientists show how one such model could better account for the way humans actually go about reaching a destination.

Sang Hoon Lee and Petter Holme at Umeå University in Sweden focus on a type of "greedy" navigation model, where at each point on a map, a navigator heads in the direction most in line with her destination (say a tall building in the distance) and only backtracks if she can't move to a point that hasn't already been visited. The model thus assumes a navigator has more information than one making random decisions, but doesn't have at hand any "smart" technology telling her the overall shortest route.

Using maps of New York, Boston, and the Swiss Rail System, as well as the maze at Leeds Castle in England, the authors compare the distance traveled by a greedy navigator with that taken by a random navigator and the actual shortest path. Not surprisingly, greedy navigators get to where they are going in a much shorter distance than random travelers, though this advantage almost vanishes in the disorienting twists and turns in a maze.

Such models could be used to figure out the impact of blocking off certain bridges, tunnels, or roads on drivers or pedestrians trying to navigate a city. What do Lee and Holme advise to keep a greedy navigator's trip as short as possible in Boston? Keep the Harvard Bridge open. – Jessica Thomas

Previous synopsis | Next synopsis

66	Cape Town	0.320270326
67	Memphis	0.317301402
68	Seoul	0.316102892
69	Beijing	0.313137426
70	Belo Horizonte	0.30973628
71	Dhaka	0.309330927
72	Addis Ababa	0.304048152

continent US Europe Asia Latin America Africa

0.2

(a)

 10^{2}

 10^{3}

Ν

SHL and P. Holme, Phys. Rev. Lett. 108, 128701 (2012).

If we're designers/architects of systems ... (Part I)

 How to optimize the network edges for "greedy and smart" navigator with GSN strategy?

Greedy shortcut construction model

- initial configuration: minimum spanning tree (MST) from the given vertices on 2D space, minimizing the total length of the road
- adding a shortcut which does not cross the existing edges, maximizing the GSN performance at each time step
 - repeating this as long as the sum of all the road lengths does not exceed a certain threshold l_{max} (limited resource)

TABLE III: The clustering coefficient based on the number of triangles (C_{Δ}) , compared to the random counterpart $(C_r = 2M/N^2)$, where N and M are the numbers of vertices and edges, respectively).

method	C_{\bigtriangleup}	C_r	C_{\bigtriangleup}/C_r
GSNH	1.04×10^{-1}	3.20×10^{-2}	3.26
GSNE	1.89×10^{-1}	3.66×10^{-2}	5.15
SPNH	6.29×10^{-2}	2.98×10^{-2}	2.11
SPNE	1.56×10^{-1}	3.44×10^{-2}	4.53

TABLE III: The clustering coefficient based on the number of triangles (C_{\triangle}) , compared to the random counterpart $(C_r = 2M/N^2)$, where N and M are the numbers of vertices and edges, respectively).

method	C_{\bigtriangleup}	C_r	C_{\bigtriangleup}/C_r
GSNH	1.04×10^{-1}	3.20×10^{-2}	3.26
GSNE	1.89×10^{-1}	3.66×10^{-2}	5.15
SPNH	6.29×10^{-2}	2.98×10^{-2}	2.11
SPNE	1.56×10^{-1}	3.44×10^{-2}	4.53

Role of no-crossing rule

• If "crossing" is allowed,

Role of no-crossing rule

• If "crossing" is allowed,

Role of no-crossing rule

• If "crossing" is allowed,

- If we're designers/architects of systems ... (Part II)
- How to optimize the network layout for "greedy and smart" navigator with GSN strategy?

Layout optimization based on simulated annealing

- initial configuration: randomly distributed vertices (and edges attached to them) on 2D space inside the unit square, for a given network topology
- simulated annealing
- trial movement: choose a random vertex with the coordinates (x_0, y_0) $(x_0, y_0) \rightarrow (x_0 + \Delta x, y_0 + \Delta y)$ where Δx and Δy are uniformly randomly drawn from the interval [-l, l]
- calculate the average (hopping-distance-based) GSN pathway d_g, which is the object function to be minimized
- accept the movement if d_g is decreased, or with probability p otherwise
 - with $p = p_{high}$ (heating) & $p = p_{low}$ (quenching) repeatedly
- record the layout with the minimum d_g value

 $d_g(t=0)$

- If we're designers/architects of systems ... (Part II)
- How to optimize the network layout for "greedy and smart" navigator with GSN strategy?

Layout optimization based on simulated annealing

- initial configuration: randomly distributed vertices (and edges attached to them) on 2D space inside the unit square, for a given network topology
- simulated annealing
- trial movement: choose a random vertex with the coordinates (x_0, y_0) $(x_0, y_0) \rightarrow (x_0 + \Delta x, y_0 + \Delta y)$ where Δx and Δy are uniformly randomly drawn from the interval [-l, l]
- calculate the average (hopping-distance-based) GSN pathway d_g, which is the object function to be minimized
- accept the movement if d_g is decreased, or with probability p otherwise
 - with $p = p_{high}$ (heating) & $p = p_{low}$ (quenching) repeatedly
- record the layout with the minimum d_g value

 $d_g(t=1)$

- If we're designers/architects of systems ... (Part II)
- How to optimize the network layout for "greedy and smart" navigator with GSN strategy?

Layout optimization based on simulated annealing

- initial configuration: randomly distributed vertices (and edges attached to them) on 2D space inside the unit square, for a given network topology
- simulated annealing
- trial movement: choose a random vertex with the coordinates (x_0, y_0) $(x_0, y_0) \rightarrow (x_0 + \Delta x, y_0 + \Delta y)$ where Δx and Δy are uniformly randomly drawn from the interval [-l, l]
- calculate the average (hopping-distance-based) GSN pathway d_g, which is the object function to be minimized
- accept the movement if d_g is decreased, or with probability p otherwise
 - with $p = p_{high}$ (heating) & $p = p_{low}$ (quenching) repeatedly
- record the layout with the minimum d_g value

Real (but model graphs, though) examples . . .

Real (but model graphs, though) examples . . .

p=0.2, MC step #0: 23.9910204082 steps..
Real (but model graphs, though) examples . . .

p=0.2, MC step #0: 23.9910204082 steps..

Real (but model graphs, though) examples . . .

p=0.2, MC step #0: 23.9910204082 steps..

p=0.1, MC step #0: 7.971666666667 steps..

Kamada-Kawai (KK) spring layout vs GSN-pathway-optimized layout

FIG. 1: (color online) Examples of the optimal (a) and KK layout (b) of the BA model. The GSN pathway is 3.85 (4.79) for the optimal (KK) layout, respectively.

FIG. 2: (color online) A typical time series of d_g in the unit of MC steps t_{MC} , in case of the BA model used in Fig. 1, along with the real shortest path length d, d_g for the optimal layout L_{min} [Fig. 1(a)] and the KK layout [Fig. 1(b)]. The bursting part and almost flat plateau correspond to the heating (p_{high}) and quenching (p_{low}) processes, respectively. The moment of L_{min} denoted as the vertical line.

Kamada-Kawai (KK) spring layout vs GSN-pathway-optimized layout

shortest path length d, d_g for the optimal layout $L_{\rm mf_M}$ [Fig. 1(a)] and the KK layout [Fig. 1(b)]. The bursting part and almost flat plateau correspond to the heating $(p_{\rm high})$ and quenching $(p_{\rm low})$ processes, respectively. The moment of $L_{\rm min}$ denoted as the vertical line.

looking at the GSN pathways in the optimized layout more closely . . .

average step decreased along the GSN pathways

FIG. 4: (color online) Average step decreased along the GSN paths in terms of the relative position f along the pathways, in the optimized (a) and KK (b) layout. At least 18 graph ensembles are used to average for all the cases, and the horizontal axis is equipartitioned into appropriate bins. The error bars represent the standard deviation of the average values of $\Delta d(f)$ for each graph, over different graph ensembles.

looking at the GSN pathways in the optimized layout more closely . . .

average step decreased along the GSN pathways

FIG. 4: (color online) Average step decreased along the GSN paths in terms of the relative position f along the pathways, in the optimized (a) and KK (b) layout. At least 18 graph ensembles are used to average for all the cases, and the horizontal axis is equipartitioned into appropriate bins. The error bars represent the standard deviation of the average values of $\Delta d(f)$ for each graph, over different graph ensembles.

FIG. 5: (color online) An illustration of the definition of deviation from the straight line for a *s*-*t* pair. Each intermediate vertex's location in the GSN pathway of length 4 (arrows) is compared to the corresponding intermediate points (f = 1/4, 1/2 and 3/4) equally spaced in the straight line (red line). The deviation for each intermediate point is defined as the Euclidean distance between the two points (blue dashed lines), in the unit of the straight line.

looking at the GSN pathways in the optimized layout more closely . . .

average step decreased along the GSN pathways

FIG. 4: (color online) Average step decreased along the GSN paths in terms of the relative position f along the pathways, in the optimized (a) and KK (b) layout. At least 18 graph ensembles are used to average for all the cases, and the horizontal axis is equipartitioned into appropriate bins. The error bars represent the standard deviation of the average values of $\Delta d(f)$ for each graph, over different graph ensembles.

FIG. 5: (color online) An illustration of the definition of deviation from the straight line for a *s*-*t* pair. Each intermediate vertex's location in the GSN pathway of length 4 (arrows) is compared to the corresponding intermediate points (f = 1/4, 1/2 and 3/4) equally spaced in the straight line (red line). The deviation for each intermediate point is defined as the Euclidean distance between the two points (blue dashed lines), in the unit of the straight line.

average deviation from the straight line connecting s-t pairs

FIG. 6: (color online) Average deviation from the straight line connecting *s*–*t* pairs, for the relative position *x* in the GSN pathways and straight lines. Upper (lower) panels correspond to the optimized (KK) layouts, respectively. $\langle dev(f) \rangle$ [(a) and (d)] is decomposed into $\langle dev_{\parallel}(f) \rangle$ [(b) and (e)] and $\langle dev_{\perp}(f) \rangle$ [(c) and (f)] with respect to the straight line. At least 18 graph ensembles are used to average for all the cases. The horizontal axis is binned into appropriate equidistant intervals, and the error bars represent the standard deviation of the average values of measures for each graph, over different graph ensembles.

SHL and P. Holme, arXiv:1206.6651.

User-centric approach in architecture

Lost in buildings? Why are some buildings hard to "navigate?"

It might look very cool, but it might feel like a maze for general public/greedy navigators!

the study of man Human Movement and Architecture

ROBERT B. BECHTEL

MAY

"What other monumental interior in America produces such an overwhelming effect?" critic Lewis Mumford has asked of New York's Guggenheim Museum. "You may go to this building to see Kandinsky or Jackson Pollock; you remain to see Frank Lloyd Wright."

A construction worker on architect Wright's gigantic spiral expressed other ideas when the now-famous building was going up in 1957:

The way I figure it is that this is the screwiest project I ever got tied up in. The whole joint goes round and round and round and where it comes out nobody knows. (The New Yorker)

Architects have long been interested in knowing how their designs affect the traffic pattern within a building and how utilization of availa fective by proper design scientists have also becc respond to architectural some buildings more cor stimulating than others? ently in these different

Perception and Locomo

When a person move responding to the build definition of interior sp drawing board or a mo viewed from the street.

000

WorldCites — bash — 189×70

:WorldCites users ls +_2km/+_edge.txt dhep-Africa_2km/Abidjan_networkx_unit_edge.txt Africa_2km/Accra_networkx_unit_edge.txt Africa_2km/AddisAbaba_networkx_unit_edge.txt Africa_2km/Alexandria_networkx_unit_edge.txt Africa_2km/Algiers_networkx_unit_edge.txt Africa_2km/Cairo_networkx_unit_edge.txt Africa_2km/CapeTown_networkx_unit_edge.txt Africa_2km/Casablanca_networkx_unit_edge.txt Africa_2km/Dakar_networkx_unit_edge.txt Africa_2km/DarEsSalaam_networkx_unit_edge.txt Africa_2km/Durban_networkx_unit_edge.txt Africa_2km/Ibadan_networkx_unit_edge.txt Africa_2km/Johannesburg_networkx_unit_edge.txt Africa_2km/Kano_networkx_unit_edge.txt Africa_2km/Khartoum_networkx_unit_edge.txt Africa_2km/Kinshasa_networkx_unit_edge.txt Africa_2km/Lagos_networkx_unit_edge.txt Africa_2km/Luanda_networkx_unit_edge.txt Africa_2km/Nairobi_networkx_unit_edge.txt Africa_2km/Pretoria_networkx_unit_edge.txt Africa_2km/Tunis_networkx_unit_edge.txt Asia_2km/Bangkok_networkx_unit_edge.txt Asia_2km/Beijing_networkx_unit_edge.txt Asia_2km/Delhi_networkx_unit_edge.txt Asia_2km/Dhaka_networkx_unit_edge.txt Asia_2km/Guangzhou_networkx_unit_edge.txt Asia_2km/HongKong_networkx_unit_edge.txt Asia 2km/Jakarta_networkx_unit_edge.txt Asia_2km/Karachi_networkx_unit_edge.txt Asia_2km/Kolkata_networkx_unit_edge.txt Asia_2km/Manila_networkx_unit_edge.txt Asia_2km/Mumbai_networkx_unit_edge.txt Asia_2km/Nagoya_networkx_unit_edge.txt Asia_2km/Osaka_networkx_unit_edge.txt :WorldCites users dhcp-

Asia_2km/Seoul_networkx_unit_edge.txt Asia_2km/Shanghai_networkx_unit_edge.txt Asia_2km/Shenzhen_networkx_unit_edge.txt Asia_2km/Taipei_networkx_unit_edge.txt Asia_2km/Tehran_networkx_unit_edge.txt Asia_2km/Tokyo_networkx_unit_edge.txt Asia_2km/Wuhan_networkx_unit_edge.txt Europe_2km/Barcelona_networkx_unit_edge.txt Europe_2km/Berlin_networkx_unit_edge.txt Europe_2km/Brussels_networkx_unit_edge.txt Europe_2km/Bucharest_networkx_unit_edge.txt Europe_2km/Budapest_networkx_unit_edge.txt Europe_2km/Hamburg_networkx_unit_edge.txt Europe_2km/London_networkx_unit_edge.txt Europe_2km/Lyon_networkx_unit_edge.txt Europe_2km/Madrid_networkx_unit_edge.txt Europe_2km/Marseille_networkx_unit_edge.txt Europe_2km/Milan_networkx_unit_edge.txt Europe_2km/Munich_networkx_unit_edge.txt Europe_2km/Naples_networkx_unit_edge.txt Europe_2km/Paris_networkx_unit_edge.txt Europe_2km/Prague_networkx_unit_edge.txt Europe_2km/Rome_networkx_unit_edge.txt Europe_2km/Sofia_networkx_unit_edge.txt Europe_2km/Valencia_networkx_unit_edge.txt Europe_2km/Vienna_networkx_unit_edge.txt Europe_2km/Warsaw_networkx_unit_edge.txt LatinAmerica 2km/BeloHorizonte_networkx_unit_edge.txt US_2km/Philadelphia_networkx_unit_edge.txt LatinAmerica_2km/Bogota_networkx_unit_edge.txt LatinAmerica_2km/Brasilia_networkx_unit_edge.txt LatinAmerica_2km/BuenosAires_networkx_unit_edge.txt LatinAmerica_2km/Caracas_networkx_unit_edge.txt LatinAmerica_2km/Fortaleza_networkx_unit_edge.txt LatinAmerica_2km/Guadalajara_networkx_unit_edge.txt

LatinAmerica_2km/Guayaquil_networkx_unit_edge.txt LatinAmerica_2km/Lima_networkx_unit_edge.txt LatinAmerica_2km/Maracaibo_networkx_unit_edge.txt LatinAmerica_2km/Medellin_networkx_unit_edge.txt LatinAmerica_2km/MexicoCity_networkx_unit_edge.txt LatinAmerica_2km/Monterrey_networkx_unit_edge.txt LatinAmerica_2km/PortoAlegre_networkx_unit_edge.txt LatinAmerica_2km/Recife_networkx_unit_edge.txt LatinAmerica_2km/RioDeJaneiro_networkx_unit_edge.tx1 LatinAmerica_2km/Salvador_networkx_unit_edge.txt LatinAmerica_2km/Santiago_networkx_unit_edge.txt LatinAmerica_2km/SantoDomingo_networkx_unit_edge.txt LatinAmerica_2km/SaoPaulo_networkx_unit_edge.txt US_2km/Austin_networkx_unit_edge.txt US_2km/Charlotte_networkx_unit_edge.txt US_2km/Chicago_networkx_unit_edge.txt US_2km/Columbus_networkx_unit_edge.txt US_2km/Dallas_networkx_unit_edge.txt US_2km/Detroit_networkx_unit_edge.txt US_2km/ElPaso_networkx_unit_edge.txt US_2km/FortWorth_networkx_unit_edge.txt US_2km/Houston_networkx_unit_edge.txt US_2km/Indianapolis_networkx_unit_edge.txt US_2km/Jacksonville_networkx_unit_edge.txt US_2km/LosAngeles_networkx_unit_edge.txt US_2km/Memphis_networkx_unit_edge.txt US_2km/NewYork_networkx_unit_edge.txt US_2km/Phoenix_networkx_unit_edge.txt US_2km/SanAntonio_networkx_unit_edge.txt US_2km/SanDiego_networkx_unit_edge.txt US_2km/SanFrancisco_networkx_unit_edge.txt US_2km/SanJose_networkx_unit_edge.txt

000

WorldCites — bash — 189×70

:WorldCites users ls +_2km/+_edge.txt dhep-Africa_2km/Abidjan_networkx_unit_edge.txt Africa_2km/Accra_networkx_unit_edge.txt Africa_2km/AddisAbaba_networkx_unit_edge.txt Africa_2km/Alexandria_networkx_unit_edge.txt Africa_2km/Algiers_networkx_unit_edge.txt Africa_2km/Cairo_networkx_unit_edge.txt Africa_2km/CapeTown_networkx_unit_edge.txt Africa_2km/Casablanca_networkx_unit_edge.txt Africa_2km/Dakar_networkx_unit_edge.txt Africa_2km/DarEsSalaam_networkx_unit_edge.txt Africa_2km/Durban_networkx_unit_edge.txt Africa_2km/Ibadan_networkx_unit_edge.txt Africa_2km/Johannesburg_networkx_unit_edge.txt Africa_2km/Kano_networkx_unit_edge.txt Africa_2km/Khartoum_networkx_unit_edge.txt Africa_2km/Kinshasa_networkx_unit_edge.txt Africa_2km/Lagos_networkx_unit_edge.txt Africa_2km/Luanda_networkx_unit_edge.txt Africa_2km/Nairobi_networkx_unit_edge.txt Africa_2km/Pretoria_networkx_unit_edge.txt Africa_2km/Tunis_networkx_unit_edge.txt Asia_2km/Bangkok_networkx_unit_edge.txt Asia_2km/Beijing_networkx_unit_edge.txt Asia_2km/Delhi_networkx_unit_edge.txt Asia_2km/Dhaka_networkx_unit_edge.txt Asia_2km/Guangzhou_networkx_unit_edge.txt Asia_2km/HongKong_networkx_unit_edge.txt Asia 2km/Jakarta networkx unit edge,txt Asia_2km/Karachi_networkx_unit_edge.txt Asia_2km/Kolkata_networkx_unit_edge.txt Asia_2km/Manila_networkx_unit_edge.txt Asia_2km/Mumbai_networkx_unit_edge.txt Asia_2km/Nagoya_networkx_unit_edge.txt Asia_2km/Osaka_networkx_unit_edge.txt dhcp-WorldCites users

Asia_2km/Seoul_networkx_unit_edge.txt Asia_2km/Shanghai_networkx_unit_edge.txt Asia_2km/Shenzhen_networkx_unit_edge.txt Asia_2km/Taipei_networkx_unit_edge.txt Asia_2km/Tehran_networkx_unit_edge.txt Asia_2km/Tokyo_networkx_unit_edge.txt Asia_2km/Wuhan_networkx_unit_edge.txt Europe_2km/Barcelona_networkx_unit_edge.txt Europe_2km/Berlin_networkx_unit_edge.txt Europe_2km/Brussels_networkx_unit_edge.txt Europe_2km/Bucharest_networkx_unit_edge.txt Europe_2km/Budapest_networkx_unit_edge.txt Europe_2km/Hamburg_networkx_unit_edge.txt Europe_2km/London_networkx_unit_edge.txt Europe_2km/Lyon_networkx_unit_edge.txt Europe_2km/Madrid_networkx_unit_edge.txt Europe_2km/Marseille_networkx_unit_edge.txt Europe_2km/Milan_networkx_unit_edge.txt Europe_2km/Munich_networkx_unit_edge.txt Europe_2km/Naples_networkx_unit_edge.txt Europe_2km/Paris_networkx_unit_edge.txt Europe_2km/Prague_networkx_unit_edge.txt Europe_2km/Rome_networkx_unit_edge.txt Europe_2km/Sofia_networkx_unit_edge.txt Europe_2km/Valencia_networkx_unit_edge.txt Europe_2km/Vienna_networkx_unit_edge.txt Europe_2km/Warsaw_networkx_unit_edge.txt LatinAmerica 2km/BeloHorizonte_networkx_unit_edge.txt US_2km/Philadelphia_networkx_unit_edge.txt LatinAmerica_2km/Bogota_networkx_unit_edge.txt LatinAmerica_2km/Brasilia_networkx_unit_edge.txt LatinAmerica_2km/BuenosAires_networkx_unit_edge.txt LatinAmerica_2km/Caracas_networkx_unit_edge.txt LatinAmerica_2km/Fortaleza_networkx_unit_edge.txt LatinAmerica_2km/Guadalajara_networkx_unit_edge.txt

LatinAmerica_2km/Guayaquil_networkx_unit_edge.txt LatinAmerica_2km/Lima_networkx_unit_edge.txt LatinAmerica_2km/Maracaibo_networkx_unit_edge.txt LatinAmerica_2km/Medellin_networkx_unit_edge.txt LatinAmerica_2km/MexicoCity_networkx_unit_edge.txt LatinAmerica_2km/Monterrey_networkx_unit_edge.txt LatinAmerica_2km/PortoAlegre_networkx_unit_edge.txt LatinAmerica_2km/Recife_networkx_unit_edge.txt LatinAmerica_2km/RioDeJaneiro_networkx_unit_edge.tx1 LatinAmerica_2km/Salvador_networkx_unit_edge.txt LatinAmerica_2km/Santiago_networkx_unit_edge.txt LatinAmerica_2km/SantoDomingo_networkx_unit_edge.txt LatinAmerica_2km/SaoPaulo_networkx_unit_edge.txt US_2km/Austin_networkx_unit_edge.txt US_2km/Charlotte_networkx_unit_edge.txt US_2km/Chicago_networkx_unit_edge.txt US_2km/Columbus_networkx_unit_edge.txt US_2km/Dallas_networkx_unit_edge.txt US_2km/Detroit_networkx_unit_edge.txt US_2km/ElPaso_networkx_unit_edge.txt US_2km/FortWorth_networkx_unit_edge.txt US_2km/Houston_networkx_unit_edge.txt US_2km/Indianapolis_networkx_unit_edge.txt US_2km/Jacksonville_networkx_unit_edge.txt US_2km/LosAngeles_networkx_unit_edge.txt US_2km/Memphis_networkx_unit_edge.txt US_2km/NewYork_networkx_unit_edge.txt US_2km/Phoenix_networkx_unit_edge.txt US_2km/SanAntonio_networkx_unit_edge.txt US_2km/SanDiego_networkx_unit_edge.txt US_2km/SanFrancisco_networkx_unit_edge.txt US_2km/SanJose_networkx_unit_edge.txt

A nice example set (or "testbed") of spatial networks

=

🖐 Terminal Shell Edit View Window Help

WorldCites - bash - 189×70

James H. Fowler

Department of Political Science

School of Medicine

University of California

jhfowler@ucsd.edu

dhcp-' :WorldCites user\$ ls *_2km/*_edge.txt

Africa Sku/Ahidian natureku unit adam tut Acia Sku/Canul natureku unit adam tut

Core-Periphery Structure in Networks

M. Puck Rombach Oxford Centre for Industrial and Applied Mathematics University of Oxford rombach@maths.ox.ac.uk

Mason A. Porter Oxford Centre for Industrial and Applied Mathematics Complex Agent-Based Dynamic Networks University of Oxford porterm@maths.ox.ac.uk

> Peter J. Mucha Department of Mathematics Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina mucha@unc.edu

> > February 14, 2012

Abstract

Intermediate-scale (or 'meso-scale') structures in networks have received considerable attention, as the algorithmic detection of such structures makes it possible to discover network features that are not apparent either at the local scale of nodes and edges or at the global scale of summary statistics. Numerous types of meso-scale structures can occur in networks, but investigations of meso-scale network features have focused predominantly on the identification and study of community structure. In this paper, we develop a new method to investigate the meso-scale feature known as *core-periphery structure*, which consists of an identification of a network's nodes into a densely connected core and a sparsely connected periphery. In contrast to traditional network communities, the nodes in a core are also reasonably well-connected to those in the periphery. Our new method of computing core-periphery structure can identify multiple cores in a network and takes different possible cores into account, thereby enabling a detailed description of core-periphery structure. We illustrate the differences between our method and existing methods for identifying which nodes belong to a core, and we use it to classify the most important nodes using examples of friendship, collaboration, transportation, and voting networks.

istichmerica_2km/Guayaquil_networkx_unit_edge.txt
merica_2km/Lima_networkx_unit_edge.txt
merica_2km/Maracaibo_networkx_unit_edge.txt

PHYSICAL REVIEW E 86, 036104 (2012)

Taxonomies of networks from community structure

 Jukka-Pekka Onnela, ^{1,2,3,4,*} Daniel J. Fenn, ^{4,5,*} Stephen Reid, ³ Mason A. Porter, ^{4,6} Peter J. Mucha, ⁷ Mark D. Fricker, ^{4,8} and Nick S. Jones^{3,4,9,10}
 ¹Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
 ³Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts 02115, USA
 ³Department of Physics, University of Oxford, Oxford OXI 3PU, United Kingdom
 ⁴CABDyN Complexity Centre, University of Oxford, Oxford OXI 1HP, United Kingdom
 ⁵Mathematical and Computational Finance Group, University of Oxford, Oxford OXI 3LB, United Kingdom
 ⁶Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, OXI 3LB, United Kingdom
 ⁷Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics and Institute for Advanced Materials, Nanoscience & Technology, University of Oxford, South Parks Road, Oxford OXI 3RB, United Kingdom
 ⁹Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford OXI 3QU, United Kingdom
 ⁹Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford OXI 3QU, United Kingdom

The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

DOI: 10.1103/PhysRevE.86.036104

PACS number(s): 89.75.Hc

000

interica_2km/Guayaquil_networkx_unit_edge.txt
merica_2km/Lima_networkx_unit_edge.txt
merica_2km/Maracaibo_networkx_unit_edge.txt
merica_2km/Maracaibo_networkx_unit_edge.txt

PHYSICAL REVIEW E 86, 036104 (2012)

Taxonomies of networks from community structure

 Jukka-Pekka Onnela, ^{1,2,3,4,*} Daniel J. Fenn, ^{4,5,*} Stephen Reid, ³ Mason A. Porter, ^{4,6} Peter J. Mucha, ⁷ Mark D. Fricker, ^{4,8} and Nick S. Jones^{3,4,9,10}
 ¹Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
 ²Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts 02115, USA
 ³Department of Physics, University of Oxford, Oxford OXI 3PU, United Kingdom
 ⁴CABDyN Complexity Centre, University of Oxford, Oxford OXI 1HP, United Kingdom
 ⁵Mathematical and Computational Finance Group, University of Oxford, Oxford OXI 3LB, United Kingdom
 ⁶Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, OXI 3LB, United Kingdom
 ⁶Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics and Institute for Advanced Materials, Nanoscience & Technology, University of Oxford, South Parks Road, Oxford OXI 3RB, United Kingdom
 ⁹Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford OXI 3QU, United Kingdom
 ⁹Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford OXI 3QU, United Kingdom
 ⁹Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford OXI 3QU, United Kingdom

The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.

DOI: 10.1103/PhysRevE.86.036104

PACS number(s): 89.75.Hc

Core-periphery structure of networks

• structural core-periphery

· M. P. Rombach et al., arXiv:1202.2684 (and references therein).

 based on the structural definition: "core nodes tend to be connected to core nodes, and peripheral nodes also tend to be connected to core nodes."

- core-periphery in terms of transportation
 - · M. Cucuringu et al., in preparation.
 - backup-pathway-based definition:

Objective B1: Develop a novel computationally efficient core-periphery detection algorithm. The approach we propose to investigate in this direction is reminiscent of the algorithm for computing a measure of betweenness centrality in networks based on random walks [46]. Our approach aims at developing a scoring method for nodes, based on computing shortest paths in a graph, which reflects the likelihood of that node being in the core, and hence the name of PATH-SCORE (P-SCORE). In what follows, we restrict our attention to undirected unweighted graphs, although we have experimented our approach on weighted graphs and plan on considering directed networks. For each edge (i, j) of a graph G, we compute the shortest path in G between nodes i and j, with edge (i, j) temporarily removed, and all nodes on this shortest path increase their path-score value by ± 1 . After repeating this procedure for all edges in G, each node will have a P-Score that reflects the likelihood of that node being in the core. The intuition behind our algorithm is that nodes that are in the core will be on many shortest path in the graph, while nodes in the core will rarely be so.

Core-periphery structure of networks

• structural core-periphery

· M. P. Rombach et al., arXiv:1202.2684 (and references therein).

 based on the structural definition: "core nodes tend to be connected to core nodes, and peripheral nodes also tend to be connected to core nodes."

more suitable for road networks!

Figure 1: Different network block models. (a) Community structure, (b) core-periphery structure, (c) global core-periphery structure with local community structure, and (d) global community structure with local core-periphery structure. Note that (c) and (d) are equivalent.

core-periphery in terms of transportation M. Cucuringu *et al.*, in preparation. backup-pathway-based definition:

Objective B1: Develop a novel computationally efficient core-periphery detection algorithm. The approach we propose to investigate in this direction is reminiscent of the algorithm for computing a measure of betweenness centrality in networks based on random walks [46]. Our approach aims at developing a scoring method for nodes, based on computing shortest paths in a graph, which reflects the likelihood of that node being in the core, and hence the name of PATH-SCORE (P-SCORE). In what follows, we restrict our attention to undirected unweighted graphs, although we have experimented our approach on weighted graphs and plan on considering directed networks. For each edge (i, j) of a graph G, we compute the shortest path in G between nodes i and j, with edge (i, j) temporarily removed, and all nodes on this shortest path increase their path-score value by ± 1 . After repeating this procedure for all edges in G, each node will have a P-Score that reflects the likelihood of that node being in the core. The intuition behind our algorithm is that nodes that are in the core will be on many shortest path in the graph, while nodes in the core will rarely be so.

Core-periphery structure of networks

• structural core-periphery

· M. P. Rombach et al., arXiv:1202.2684 (and references therein).

 based on the structural definition: "core nodes tend to be connected to core nodes, and peripheral nodes also tend to be connected to core nodes."

P-SCORE for nodes and edges, considering the shortest path minimizing the sum of Euclidean distances

P-SCORE for nodes and edges, considering the shortest path minimizing the sum of Euclidean distances

Fungal network data: another transportation networks! (provided by Mark Fricker & Dan Fenn)

ref) L. Heaton et al., Phys. Rev. E 86, 021905 (2012); Proc. R. Soc. B 277, 3265 (2012); Fungal Biology Reviews 26, 12 (2012).

Fungal network data: another transportation networks! (provided by Mark Fricker & Dan Fenn)

Also in the new Video and Audio Have Your Say Magazine In Pictures **Country Profiles** Special Reports Related BBC sites Sport Weather Democracy Live Radio 1 Newsbeat **CBBC** Newsround On This Day Editors' Blog

BBC

Ingland **orthern** Irela

Scotland Wales lusines Politics Health

Education Science & En Technology Entertainment

fusion2a

ref) L. Heaton et al., Phys. Rev. E 86, 021905 (2012); Proc. R. Soc. B 277, 3265 (2012); Fungal Biology Reviews 26, 12 (2012).

P-SCORE for nodes and edges, considering the optimal path maximizing the sum of "conductance"

and more ... (518 networks in total)

ref) J.-P. Onnela, D. J. Fenn, S. Reid, M. A. Porter, P. J. Mucha, M. D. Fricker, and N. S. Jones, Phys. Rev. E 86, 036104 (2012).

Dendrogram of road networks, based on the mesoscopic response function (MRF) analysis

Summary and Outlook

• **greedy navigation**: a more realistic approach, exploiting local geometric information

- \cdot modified centrality measures
- \cdot "Braess edge" phenomenon due to greediness

 properties of greedy-navigation-friendly network topology (shortcut construction) or geometry (layout optimization)

• data: **100 road networks, 518 fungal networks**, etc. (any suggestion or donation? ;)

- core-periphery structure
- other mesoscopic properties (e.g., "taxonomy" analysis)

• . . .

Summary and Outlook

• **greedy navigation**: a more realistic approach, exploiting local geometric information

- \cdot modified centrality measures
- \cdot "Braess edge" phenomenon due to greediness

 properties of greedy-navigation-friendly network topology (shortcut construction) or geometry (layout optimization)

• data: **100 road networks, 518 fungal networks**, etc. (any suggestion or donation? ;)

- core-periphery structure
- other mesoscopic properties (e.g., "taxonomy" analysis)

• . . .

Thank you for your attention! =)