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Real navigation?
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Real navigation?
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"Which information does human being use?”

“cognitive map" (map in mind/brain)

simple organisms also use chemotaxis to find
the target
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"Which information does human being use?”

“cognitive map" (map in mind/brain)

simple organisms also use chemotaxis to find

the target

Simplify!

(distancel/directional information)

spatial network on 2D
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Big picture

random walk without
any information

»

average path length,
betweenness centrality, etc.
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Greedy routing based on local geometric information

* “moving to the neighbor closest to the target’-strategy

* [imitation: it sometimes fails, due to the possibility of being trapped

target

SOUrce

Note: look at the graph as shown in the 2D (Euclidean) space!

J.M. Kleinberg, Nature 406, 845 (2000); M. Boguiia et al., Nat. Phys. 5, 74 (2008); PRL 102, 058701 (2009).
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Greedy routing based on local geometric information

* “moving to the neighbor closest to the target’-strategy

* [imitation: it sometimes fails, due to the possibility of being trapped

nowhere to go! (failure)

Note: look at the graph as shown in the 2D (Euclidean) space!

J.M. Kleinberg, Nature 406, 845 (2000); M. Boguiia et al., Nat. Phys. 5, 74 (2008); PRL 102, 058701 (2009).




Simple model using geometric information

Greedy Spatial Navigation (GSN) protocol
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Note: look at the graph as shown in the 2D (Euclidean) space!




Simple model using geometric information

Greedy Spatial Navigation (GSN) protocol

“biased” depth-first search (DFS)
movement, based on direction: to
the unvisited neighbor whose
direction (from the current vertex)
closest to the direction to the target!

target

y

Note: look at the graph as shown in the 2D (Euclidean) space!



Simple model using geometric information

Greedy Spatial Navigation (GSN) protocol

“biased” depth-first search (DFS)
movement, based on direction: to
the unvisited neighbor whose

\ R direction (from the current vertex)
\\ - closest to the direction to the target!
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target
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Note: look at the graph as shown in the 2D (Euclidean) space!



Simple model using geometric information
Greedy Spatial Navigation (GSN) protocol

\ SOUrce “biased” depth-first search (DFS)

movement, based on direction: to
the unvisited neighbor whose

\ R direction (from the current vertex)
- closest to the direction to the target!
% “backtracking” to the deepest

level above with an available

vertex to step down on is

’ possible, if it's stuck (finding

the next-best way from there)

source DFS # self-avoiding walk

target  target

Note: look at the graph as shown in the 2D (Euclidean) space!



Simple model using geometric information
Greedy Spatial Navigation (GSN) protocol

SOUrce “biased” depth-first search (DFS)

movement, based on direction: to
the unvisited neighbor whose

\ W N direction (from the current vertex)
\\ ’ closest to the direction to the target!
..,.-‘

_— ,A\ “backtracking” to the deepest
' ‘, g P

level above with an available

vertex to step down on is

4‘ possible, if it's stuck (finding
’\ stuck! the next-best way from there)

DFS # self-avoiding walk

source

target  target

Note: look at the graph as shown in the 2D (Euclidean) space!



Simple model using geometric information

Greedy Spatial Navigation (GSN) protocol

source

“biased” depth-first search (DFS)
movement, based on direction: to
the unvisited neighbor whose

\ R direction (from the current vertex)
closest to the direction to the target!

“backtracking” to the deepest
. A level above with an available

vertex to step down on is

possible, if it's stuck (finding

\ stuckl the next-best way from there)
DFS # self-avoiding walk

source

target target
& greedy but (and?)

smart navigator!

_>

Note: look at the graph as shown in the 2D (Euclidean) space!



Simple model using geometric information

Greedy Spatial Navigation (GSN) protocol

movement, based on direction: to
the unvisited neighbor whose

\ R direction (from the current vertex)
- closest to the direction to the target!
‘ "backtracking” to the deepest

level above with an available
vertex to step down on is
possible, if it's stuck (finding
\ the next-best way from there)
DFS # self-avoiding walk

\ “biased” depth-first search (DFS)

source

greedy but (and?)

—>
real shortest path ... smart navigator!

Note: look at the graph as shown in the 2D (Euclidean) space!



Simple model using geometric information

Greedy Spatial Navigation (GSN) protocol
random DFS ...

“biased” depth-first search (DFS)
movement, based on direction: to
the unvisited neighbor whose
direction (from the current vertex)
closest to the direction to the target!

“backtracking” to the deepest
level above with an available
vertex to step down on is
possible, if it's stuck (finding
the next-best way from there)
DFS # self-avoiding walk

source

greedy but (and?)

—>
real shortest path ... smart navigator!

Note: look at the graph as shown in the 2D (Euclidean) space!



Simple model using geometric information

Greedy Spatial Navigation (GSN) protocol
random DFS ...

“biased” depth-first search (DFS)
movement, based on direction: to
the unvisited neighbor whose
direction (from the current vertex)
closest to the direction to the target!

“backtracking” to the deepest
level above with an available
vertex to step down on is
possible, if it's stuck (finding
the next-best way from there)
DFS # self-avoiding walk

source

greedy but (and?)

—
real shortest path ... smart navigator!

Note: look at the graph as shown in the 2D (Euclidean) space!



Secret of success: graph visualization technique

> Kamada-Kawai (KK) spring-based graph layout

It looks good! (to human eyes)
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It looks good! (to human eyes)

side(?) effect: vertices closer in graphs tend to be
located closer in (2D) geometric space as well!

So, does the layout algorithm really help GSN?

Barabasi-Albert model Holme-Kim model Watts-Strogatz model

- (topological, with :
(purely topological) non-vanishing clustering) (based on 1D ring)
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> Kamada-Kawai (KK) spring-based graph layout
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Secret of success: graph visualization technique

> Kamada-Kawai (KK) spring-based graph layout
It looks good! (to human eyes)

side(?) effect: vertices closer in graphs tend to be
located closer in (2D) geometric space as well!

So, does the layout algorithm really help GSN?

Barabasi-Albert model I_(lt(:&elé:iiglmxﬁﬁl Watts-Strogatz model
I logical ’ '
(purely topological) non-vanishing clustering) (based on 1D ring)
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Average path length
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“ biased Depth-First Search
O Random Depth-First Search
A Topologically Shortest Path

“exploitable” geometric information increased

| SHL and P. Holme, Physica A 390, 3996 (2011).



Application to real spatial networks

data from H. Youn et al.,

»»

Tas $£s5 PRL10I, 128701 (2008)

data from M. Kurant et al.,
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Application to real spatial networks

TABLE I: Properties of four empirical datasets. Performance of rout-

(a

ing strategies for road and railway networks. For each network, the

number of vertices N, the number of edges M, the average path
length for GSN strategy d,, real shortest path d, random DFS d,,
and navigability v = d/d, are shown in each column. Null models
for Boston and New York roads are connected Erdds-Rényi random
graphs [17] with the same N and M, where the geographic layout
is given by Kamada-Kawai algorithm [15], and the results averaged
over 10° samples are shown.

Bost network| N M d, d d, %
Boston| 88 ESS 6.82 N2 30570 84 %
null model 8.606(9) 23.20(1) 3.6758(1) 37 %
New York| 125 217 8.27 6.79 44.39 82%
null model 11.72(2) 33.51(2) 4.0300(1) 34 %
Switzerland| 1613 1680 145.14 46.56 769.68  32%
,] Europe| 4853 5765 143.69 50.87 2011.93 35%

W

Switzerland railway

e

R — e



Application to real spatial networks
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TABLE I: Properties of four empirical datasets. Performance of rout-
ing strategies for road and railway networks. For each network, the
number of vertices N, the number of edges M, the average path
length for GSN_strategy d,, real shortest path d, random DFS d4,,
andnav1oab111ty y = d/d shown in each column. Null models
for Boston and New ™ Y« are connected Erd6s-Rényi random
graphs [17] with the same N and M, where the geographic layout
is given by Kamada-Kawai algorithm [15], and the results averaged
over 10° samples are shown.

network| N M d, d d, %
Boston| 88 ESS 6.82 N2 30570 84 %
null model 8.606(9) 23.20(1) 3.6758(1) 37 %
New York| 125 217 8.27 6.79 44.39 82%
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Application to real spatial networks

@ TABLE I: Properties of four empirical datasets. Performance of rout- |
ing strategies for road and railway networks. For each network, the
number of vertices N, the number of edges M, the average path
length for GSN_strategy d,, real shortest path d, random DFS d4,,
andnav1oab111ty W = d/d shown in each column. Null models
for Boston and New are connected Erd6s-Rényi random
graphs [17] with the same N and M, where the geographic layout
is given by Kamada-Kawai algorithm [15], and the results averaged
over 10° samples are shown.

Bost network| N M d, d d,
Boston| 88 135 6.82 D12 30.75 | ,
null model 8.606(9) 23.20(1) 3.6758(1)f 37 % |}
New York| 125 217  8.27 6.79 4439 | 82% ||
null model 11.72(2) 33.51(2) 4.0300(1)} 34 % |}
Switzerland| 1613 1680 145.14  46.56  769.68 | 32% |
| Europe| 4853 5765 143.69  50.87  2011.93 | 35% |

quute effncuent strategy for these real transport networks' ;

SW1tzerland rallway



GSN works in @ maze!

Maze in Leeds Castle,
Kent, England

real shortest path shown in filled vertices (d = 52 steps)
GSN pathway (dy = 87 steps) shown in arrows
average random DFS pathway (dr = 134(1) steps)



GSN works in @ maze!

Maze in Leeds Castle,
Kent, England

real shortest path shown in filled vertices (d = 52 steps)
GSN pathway (dgy = 87 steps) shown in arrows
average random DFS pathway (dr = 134(1) steps)



New centrality based on GSN:
Navigator Centrality » for vertex/edge

vertex Navigator Centrality
I/I(V) & Zz‘¢j O-::J'

o, =1if GSN path goes from i to j via v, 0 otherwise

edge Navigator Centrality
LUBIE

O';g.- =11 GSN path goes fromi to j via /, 0 otherwise



New centrality based on GSN:
Navigator Centrality » for vertex/edge

vertex Betweenness |CentraI|ty

b(v) ., ’

G — = =11f shortest path 'goes from7i to j via v, O otherwise
O'Z.j =# of shortest paths going from: to j

edge Betweenhess |Centra|ity
b(l) l z;é]

o, = lif shortestpath |goes fromi to j via /, 0 otherwise



New centrality based on GSN:
Navigator Centrality » for vertex/edge

vertex Navigator Centrality
I/I(V) & Zz‘¢j O-::J'

o, =1if GSN path goes from i to j via v, 0 otherwise

edge Navigator Centrality
LUBIE

O';g.- =11 GSN path goes fromi to j via /, 0 otherwise



Navigator centralities for roads
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ed by greedy navigators




Counterintuitive phenomenon caused by greedy navigators
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Counterintuitive phenomenon caused by greedy navigators

\d ‘Braess” edge, reminiscent of
“| the celebrated Braess'’s paradox

H. Youn, M. Gastner, and H. Jeong, Phys. Rev. Lett. 101, 128701 (2008).



Quantifying this property: edge Essentiality e for edge

edge Essentiality

e(/)=aGPL(G \{/})—aGPL(G)
where aGPL = average GSN path length



Quantifying this property: edge Essentiality e for edge

edge Essentiality

e(/) =aGPL(G \{/})—aGPL(G)
where aGPL = average GSN path length

/ N\

e(/) < 0: the removal of /
enhances the navigability
— "Braess’ edge /

(from Braess'’s paradox)

e(/) > 0: the removal of /
deteriorates the navigability
— “normal” edge /



Edge essentiality for roads
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Is it possible to predict e or "Braessiness” from other
topological/geometric characteristics?

TABLE II: Coethcients for the multiple linear regression e = m b +
m,(length) + myc + my(k;k ;) + ms6 for road networks, with some mea-
sures defined on edges: b (the edge betweenness), the edge length,
the distance ¢ from the midpoint of edges to the centroid of vertices,
the product k;k; of degrees of vertices attached to edges, and the an-
gle 6 between edges and principal flow direction in Eq. (6). The
statistical significance codes are ¢: < 0.1, %: < 0.05, *x: < 0.01, and

« % % < 0.001.

road Boston New York
m 6.938"* 8.864**
> ~4.597 x 107" |-4.139 x 107°
s ~1.573x 107% | 1.925x 107"
My =772 X 1072 [~=5.721 x 10"
Mms 1219 %x 1072 | 3.202 x 1072°

multiple R’ 0.2520 0.2059

p-value 2:695 X107 | 2242 X10~




Is it possible to predict e or "Braessiness” from other
topological/geometric characteristics?

TABLE II: Coefhicients for the multiple linear regression e = m b +
m;(length) +msc +my(k;k;) + ms6 for road networks, with some mea-
sures defined on edges: b (the edge betweenness), the edge length,
the distance ¢ from the midpoint of edges to the centroid of vertices,
the product k;k; of degrees of vertices attached to edges, and the an-
gle 6 between edges and principal flow direction in Eq. (6). The
statistical significance codes are ¢: < 0.1, %: < 0.05, *x: < 0.01, and

x % x: < (0.001.
road Boston New York |
4 3 2;38*1 e heavily depends on very specific
’?’2 - 1“57%X geometric arrangements, so it is not
m;3 5 3 plau5|ble to predict only from
My —-8.772 x 1 sthe atwork characteristics!
j{ multllR-

p-value




Let’s get more systematic and reliable data!
unit area, uniform criterion for selecting roads, etc.

Merkaartor

£ by

T .

¥ o a
‘News JDownlodds Repository Flles Issues Overview  Activity',, Roadmap | Calendar

Other Language: g Russian [ French [ German

Introduction
Merkaartor is an O OpenStreetMap editor for Unix, Windows and Mac OS X (prerelease, Intel only),
distributed under the GNU General Public License.
¢ Download
¢ Documentation
e Have a look at the list of authors
e You are welcome to donate. Thanks to those who already did.
o GIS for Dumm written by a dummy
¢ Development
¢ Complling
e Screenshots
« FAQ
-

Need help? Contact us

Features

Merkaartor has some unique features such as...

e Map view near-WYSIWYG, anti-aliased, with road names - 30,0491 4 oo 0 b |
o Transparent display of ' map features like roads, amenities and areas

¢ Style editor for the mop display, including multiple styles

¢ Support for handling separated highways

¢ Easy downioad and upload of OpenStreetMap data

o Render an area with the current style (SVG or Bitmap)

o Native application (developed with the Qt4 toolkit)

e Import & NMEA files

¢ Live connection to your GPS

o Experimental mobile device support (Pocket PCs)

o View your GPS tracks and geotagged photos without the need to upload them
- S

Easy use of Walking Paper

# 480px-Merkaartor_0.17_sampie.png - Merkaartor 0.17 sampie (151.4 kB)




the first step to get the road network data with Merkaartor:
New York city case

2 © 6 untitied - Merkaartor v0.14

File

Download Download more Save Move Rotate Node Road Area

v v 2 H o ) 4 e~ N 5 ())c» ) . / -" 3 : 2 . 'f = . o.

Layers 3 R ‘ \ Geo Images 3 R
'~ Map - None Info D R
= Dirty layer EdRInteraction
@ Uploaded layer Edit Interaction

= 2011-08-29710:21:26 download

o LEFT-CLICK to select v
Undo 2

(x

There is no object in the dirty layer

Tracks OSM Default All

Styles @ ®

Classic.mas (int)
Lghting.mas (int)

Mapnik.mas (int)

MapnikPlus.mas (int)

Features & o

I .
Properties Relations Roads POI's Al

1 train (rel_364630)
2 train (rel_366783)
3 train (rel_366784)

2 Cremat Denmeh feal 3 2764%9) v

>

@ Only features fully within the viewport

. GPS 2=

No Position Fix No UTC Time
Latitude
Longitude
Altitude
# Satellites
Fix Type invalid
Speed

No satellites




the first step to get the road networ
New York city case

<way 1id="7973125">

<nd

<tag
<tag
<tag
<tag

=@ @ untitied - Merkaartor v0.14 <tag

e e

W

Default

OSM

Tracks

<tag
<tag
<tag
<tag
<tag
<tag
<tag

nla
o

2 Dirty layer <tag
= Uploaded layer /- <tag
@ 2011-08-29T10:21:26 download . <tag

: <tag

</way>

ref="270373867"/>
ref="1376344657"/>

k="highway" v="residential"/>

k="lit" v="yes"/>

k="maxspeed" v="30"/>
k="name" v="Etelaranta"/>
k="name:fi" v="Eteldranta"/>

k="name:sv" v="Sodra
k="oneway" v="yes"/>
k="parking:condition
k="parking:condition
k="parking:condition
k="parking:condition

Kajen"/>

:both" v="ticket"/>

:both:default™ v="free"/>
:both:time interval® v="Mo-Fr 09:00-19:00"/>

:residents” v

k="parking:lane:both" v="inline"/>

k="parking:lane:both:inline" v="on street"/>

k="parking:ticket:zone" v="1"/>
k="snowplowing" v="yes"/>
k="surface" v="cobblestone"/>

<way 1d="123810054">

<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd
<nd

ref="1379403034"/>
ref="1304580832"/>
ref="1379403024"/>
ref="1379403014" />
ref="1379403013"/>
ref="1379403023"/>
ref="1379403032"/>
ref="1379403036"/>
ref="1379403049"/>
ref="1379403042"/>
ref="1379403041"/>
ref="1379403031"/>
ref="1379403022"/>
ref="1379403012"/>
ref="1379403005"/>
ref="1379402996"/>
ref="1379402995"/>
ref="1379402989"/>
ref="1379402981"/>
ref="1379402975"/>
ref="1379402958"/>
ref="1379402935"/>
ref="1304580746"/>
ref="265493148" />

ref="1379402896"/>
ref="1379402831"/>
ref="1379402827"/>
ref="1379402807"/>
ref="1379402804"/>
ref="1379402800"/>
ref="1379462794" /]

L64=413)3405800.\>

ucu/>



Default

OSM

Tracks

untitied - Merkaartor v0.14

AR L . s A e

= Dirty layer
2 Uploaded layer
@ 2011-08-29710:21:26 download

ay 1d="7973125">
f="270373867"/>

k="oneway" v="yes"/>

k="parking:condition:both" v="ticket"/>
k="parking:condition:both:default™ v="free"/>
k="parking:condition:both:time interval® v="Mo-Fr 09:00-19:00"/>
k="parking:condition:residents" v="C"/>

k="parking:lane:both" v="inline"/>

k="parking:lane:both:inline" v="on street"/>
k="parking:ticket:zone" v="1"/>

k="snowplowing" v="yes"/>

k="surface" v="cobblestone"/>

<way 1d="123810054">

<nd ref="1379403034"/>
<nd ref="1304586832"/>
<nd ref="1379403024"/>
<nd ref="1379403014"/>
<nd ref="1379403013"/>
<nd ref="1379403023"/>
<nd ref="1379403032"/>
<nd ref="1379403036"/>
<nd ref="1379403049"/>
<nd ref="1379403042"/>
<nd ref="1379463041"/>
<nd ref="1379403031"/>
<nd ref="1379403022"/>
<nd ref="1379463012"/>
<nd ref="1379403005"/>
<nd ref="1379402996"/>
<nd ref="1379402995"/>
<nd ref="1379402989"/>
<nd ref="1379402981"/>
<nd ref="1379402975"/>
<nd ref="1379482958"/>
<nd ref="1379402935"/>
<nd ref="1304580746"/>
<nd ref="265493148"/>

<nd ref="1379402896"/>
<nd ref="1379402831"/>
<nd ref="1379402827"/>
<nd ref="1379402807"/>
<nd ref="1379402804"/>
<nd ref="1379402800"/>
<nd ref="1379462794"/}

b

L64=,13)34058004\>



the first step to get the road network
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Dataset: 20 largest cities in the US, Europe, Asia, Latin America, and
Africa (100 cities in total)

US/Austin Europe/Barcelona Asia/Bangkok LatinAmerica/BeloHorizonte Africa/Abidjan
US/Charlotte Europe/Berlin Asial/Beijing LatinAmerica/Bogota Africa/Accra
US/Chicago Europe/Brussels Asia/Delhi LatinAmerical/Brasilia AfricalAddisAbaba
US/Columbus Europe/Bucharest Asia/Dhaka LatinAmerica/BuenosAires Africa/Alexandria
US/Dallas Europe/Budapest Asia/Guangzhou LatinAmerica/Caracas AfricalAlgiers
US/Detroit Europe/Hamburg Asia/HongKong LatinAmerical/Fortaleza Africa/Cairo
US/ElIPaso Europe/London  Asia/Jakarta LatinAmerica/Guadalajara Africa/CapeTown
US/FortWorth Europel/Lyon Asia/Karachi LatinAmerica/Guayaquil Africa/Casablanca
US/Houston Europe/Madrid Asia/Kolkata LatinAmerical/Lima Africa/Dakar
US/Indianapolis Europe/Marseille Asia/Manila LatinAmerica/Maracaibo Africa/DarEsSalaam
US/Jacksonville Europe/Milan Asia/Mumbai LatinAmerica/Medellin Africa/Durban
US/LosAngeles Europe/Munich Asia/Nagoya LatinAmerica/MexicoCity Africallbadan
US/Memphis Europe/Naples Asia/Osaka LatinAmerica/Monterrey Africa/lJohannesburg
US/NewYork Europe/Paris Asia/Seoul LatinAmerica/PortoAlegre Africa/lKhartoum
US/Philadelphia Europe/Prague Asia/lShanghai LatinAmerica/Recife Africa/Kinshasa
US/Phoenix Europe/Rome Asia/lShenzhen LatinAmerica/RioDedaneiro Africa/Lagos
US/SanAntonio Europe/Sofia Asial/Taipei LatinAmerical/Salvador Africa/lLuanda
US/SanDiego Europe/Valencia Asial/Tehran LatinAmerica/Santiago Africa/Nairobi
US/SanFrancisco Europe/Vienna Asial/Tokyo LatinAmerica/SantoDomingo Africa/Pretoria
US/SandJose Europe/Warsaw Asia/Wuhan LatinAmerica/SaoPaulo Africa/Tunis




d/ds vs d/d, profile for 100 large cities (2 km*2 km samples)

* d: real shortest path length

L AN i e d/dy, compared to d/d,-

measure of navigability
* d,: random DFS path length
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d/ds vs d/d, profile for 100 large cities (2 km*2 km samples)

* d: real shortest path length c
New YOV d/d, compared to d/d,-

* dg: GSN path length ;
¢ /b / measure of navigability

* d;: random DFS path length
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d/d; vs d/d, profile for 100 large cities (2 km*2 km samples)

* d: real shortest path length

* dg: GSN path length d/dy compared to d/d;-:

measure of navigability

New York

e d,: random DFS path length L) A

ost [ T us
0.2 F Europe _
< 0-6r @ t‘ ; > | § - Latin AméA;iSég .

< 0.4 £ ,.2&; 4.5, S Africa
Al O a | Olr ]
0.2} & - i o i
(a) o350 (b) Qg

O I L ! ! O . | Lol . L

102 10° 107 10°
N N

diverse values for d/d; vs clear scaling for d/d;-

d/ d, shows the real characteristics of city structures



Ranked cities based on &/ d,

d/dg

SHL and P. Holme, Phys. Rev. Lett. 108, 128701 (2012).

rank city
1 Guayaquil 0.87153475 36 Caracas 0.463537945 73 | Bangkok 0.299234306
2 Dallas 0.751327251 37 | Rio de Janeiro 0.462997416 74 Brasilia 0.299090784
78 J - s 3"7\ 209
3 Khartoum 0.750326569 38 Ibadan 0.461537277 ;"_%'“' _ L ’;‘
- 39 Charlotte 0450666431 76 Fortaleza 0.277673424
4 | Johannesburg 0.6465886035 . - - - 77 Salvador 0.2479511
40 ! is 4: ' :
5 Kinshasa 0.643906117 j | l“g'a“_"‘”l“ g:j?irfz(::’ 78 | Shanghai 0.244778393
Santiago i 028 ~
G 3 2 — : —~ 79 San Jose 0.236622937
: LOS Ang.eles 0'6‘ 5007 85 42 .\"le\'lCO City ()434(’75“\77 y ’ 12 3488
7 Pretoria 0.625790442 - 80 | Hong Kong 0.233434556
— - 43 Sofia 0434447746 81 Valenci 0231731821
8 | New York 0.594814987 — -
: i 2! — 44 | Philadelphia 0.421522638 82 Vienna 0.226759618
2 Nagoya GOl 45 | Casablanca 0.418701767 83 | Madrid 0211601578
10 RCC”%‘ Q-S}’ 1970088 46 | Guangzhou 0.417294581 84 Rome 0.21040621
11 Guadalajara 0.580433974 47 Houston 0.39869371 85 Detroit 0.194525563
12 Fort Worth 0.569207094 48 Lagos 0.397973175 86 Warsaw 0.161307412
13 Wuhan 0.551891422 49 _[Santo Domingo 0.393599977 87 1unis 0.155626232
14 Lima 0.550886837 50 Alexandrna 0.391348225 8 M_'km 0.15375989
15 Cairo 0.544213047 51 Delhi 0.390437031 - g:‘“‘?" - :jﬁ;jggg‘:
N OenIx L .
16 Mumbai 0.541609353 52 Taipei 0.386707203 -
17 | Tehran 0.539319224 53 | Bogota 0376506648 1| London 0. 30008507
' : e & eore — - === 92 San Diego 0.119215411
18 Abidjan 0.53225323] 54 Mamla 0.370664996 93 Munich 0.119165581
19 Maracaibo 0.525445466 55 | Buenos Aires 0.367060505 94 Brussels 0.114166163
20 Shenzhen 0.522871912 56 | Porto Alegre 0.364351628 95 | San Antonio 0.108783428
21 Jakarta 0.522273008 57 Osaka 0.360996708 96 Berlin 0.100183015
22 San Francisco 0.518447496 58 Tokyo 0.360566814 97 Haml?urg 0.08422761
23 Naples 0.51226827 59 Marseille 0.359403937 I8 Pans 0.083574313
- oz . 60 | Bucharest 0.355247549 % Austin 0.0826651
24 Dakai 0.511954476 - - 100 Prague 0.077063185
25 Durban 0.50973R8578 (‘1 Jacksonville 0'350364§'3 . .
- : — 62 Accrs 344701237
26 | Dar es Salaam 0.509059056 = \_\‘,"l' , ((’) ‘:i;"l( =~
27 Sao Paulo 0.505905555 - 0 PRARA
28 | Medellin 0.505887074 & L tlhaso BBLEA L
- S — ‘} . 65 | Monterrey 0.320958348 O LA
2 KDLLS Sas 66 | Cape Town 0.320270326 &
\:() Lyon 0485799194 67 Memphis 0.317301402 e O
31 | Budapest 0.484988332 68 Seoul 0.316102892 oS Ry,
32 Luanda 0476971656 69 Beijing 0.313137426 e
33 | Columbus 0.472754382 70 |Belo Horizonte 0.30973628 Ak
.:4 Barcelox?a 0.467556084 71 Dhaka 0.309330927 Latin America
35 Karachi 0466714526 72 | Addis Ababa 0.304048152 Africa




Ranked cities based on /., N

d/dg

rank city

I Guayaquil 0.87153475
2 Dallas 0.751327251
3 Khartoum 0.750326569
4 | Johannesburg 0.646588605
Kinshasa 0.643906117

6 Los Angeles 0.635007285
7 Pretona 0.625790442
8 New York 0.594814987
9 Nagovya 0.590465551
10 Recife 0.581970088
11 Guadalajara 0.580433974
12 Fort Worth 0.569207094
13 Wuhan 0.551891422
14 LLima (.550886837
15 Cairo 0.544213047
16 Mumbai 0.541609353
17 Tehran 0.539319224
I8 Abidjan 0.532253231
19 Maracaibo 0.525445466
20 Shenzhen 0.522871912
21 Jakarta 0.522273008
22 | San Francisco 0.518447496
23 Naples 0.51226827
24 Dakar 0.511954476
25 Durban 0.509738578
26 | Dar es Salaam 0.509059056
27 Sao Paulo 0.505905555
28 Medellin 0.505887074
29 Kolkata 0499531424
30 Lyon 0.485799194
31 Budapest 0.484988332
32 Luanda 0476971656
33 Columbus 0.472754382
34 Barcelona 0.467556084
35 Karachi 0466714526

)
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Synopsis: Greed is Good

N\ S

SHL and P. Holme, Phys. Rev. Lett. 108, 128701 (2012).

Exploring Maps with Greedy Navigators

Sang Hoon Lee and Petter Holme
Phys. Rev. Lett. 108, 128701 (2012)

Published March 22, 2012

Many a tourist has, perhaps happily, gotten lost in the twists and tums along the way to Venice's Piazza San Marco. How

navigable a city is—or could be with an extra footbridge or better-placed signs—is something network models try to quantify.

Now, writing in Physical Review Letters, two scientists show how one such model could better account for the way humans

actually go about reaching a destination.

Sang Hoon Lee and Petter Holme at Umeé& University in Sweden focus on a type of "greedy” navigation model, where at each
point on a map, a navigator heads in the direction most in line with her destination (say a tall building in the distance) and only
backtracks if she can't move to a point that hasn't already been visited. The model thus assumes a navigator has more
information than one making random decisions, but doesn’t have at hand any “smart” technology telling her the overall shortest

route

Using maps of New York, Boston, and the Swiss Rail System, as well as the maze at Leeds Castle in England, the authors
compare the distance traveled by a greedy navigator with that taken by a random navigator and the actual shortest path. Not
surprisingly, greedy navigators get to where they are going in a much shorter distance than random travelers, though this

advantage almost vanishes in the disorienting twists and tumns in a maze.

Such models could be used to figure out the impact of blocking off certain bridges, tunnels, or roads on drivers or pedestrians

trying to navigate a city. What do Lee and Holme advise to keep a greedy navigator's trip as short as possible in Boston? Keep

the Harvard Bridge open. - Jessica Thomas

Previous synopsis | Next synopsis

EUZ 2.0
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If we're designers/architects of systems ... (Part I)

 How to optimize the network edges for “greedy and
smart” navigator with GSN strategy?

Greedy shortcut construction model

* Jnitial configuration: minimum spanning tree (MST) from the
given vertices on 2D space, minimizing the total length of

the road
* adding a shortcut which does not cross the existing edges,
maximizing the GSN performance at each time step

— repeating this as long as the sum of all the road lengths
does not exceed a certain threshold / . . (limited resource)



same initial Locations for vertices

Structures emerged from randomly distributed vertices on unit squares

hopping-distance-based Euclidean-distance-based

— N=102
fonar= 20

GSN
(greedy
navigator)

SP
(real
shortest

path)




same initial Locations for vertices

Structures emerged from randomly distributed vertices on unit squares

hopping-distance-based Euclidean-distance-based

— N=102
fonar= 20

max

GSN
(greedy
navigator)

SP
(real
shortest

path)

fraction of Braess edges = 20.41%



Structures emerged from randomly distributed vertices on unit squares

GSNH

SPNH
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Structures emerged from randomly distributed vertices on unit squares
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Structures emerged from randomly distributed vertices on unit squares

TABLE III: The clustering coefficient based on the number of triangles (Ca), compared to the
random counterpart (C, = 2M/N?, where N and M are the numbers of vertices and edges,

respectively).

method Ch C, Cn/Cy

GSNH [1.04 x 1071[3.20 x 1072| 3.26

GSNE [1.89 x 1071|3.66 x 1072| 5.15

SPNH [6.29 x 1072(|2.98 x 10~2| 2.11

SPNE [1.56 x 1071{3.44 x 10~2| 4.53




Structures emerged from randomly distributed vertices on unit squares

TABLE III: The clustering coefficient based on the number of triangles (Ca), compared to the

random counterpart (C, = 2M/N?, where N and M are the numbers of vertices and edges,

respectively). angle ¢
enclosed area A

method Ch C, Cn/Cy

GSNH [1.04 x 1071[3.20 x 1072| 3.26

GSNE [1.89 x 1071|3.66 x 1072| 5.15

SPNH [6.29 x 1072(|2.98 x 10~2| 2.11

SPNE [1.56 x 1071{3.44 x 10~2| 4.53

(b) 0.6
0.5
0.4
£ 03
0.2

0.1

enclosed area A angle 6 (radian)



Role of no-crossing rule

« If“crossing” is allowed,

p(k)

10°

degree k |, J

edge condensation” for

shortest path routing!

same initial Locations for vertices



same initial Locations for vertices

Role of no-crossing rule

« If“crossing” is allowed,

degree k |, C
edge condensation” for

shortest path routing!




Role of no-crossing rule

If “crossing” is allowed,

“local hubs” naturally emerged from
considering greedy navigators,

same initial Locations for vertices

10° 5 WITHOUT NO-CROSSING RULE = Inax=8 O
§ 12 0
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10_1 20 v |
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102 = 102 o9 i
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107 10° 10"
degree k |, c degree k
- edge condensation” for

shortest path routing!

SHL and P. Holme, arXiv:1205.0537 (Eur. Phys. J.-Spec. Top., in press)



If we're designers/architects of systems ... (Part II)

 How to optimize the network layout for “greedy and
smart’ navigator with GSN strategy?

Layout optimization based on simulated annealing

+ initial configuration: randomly distributed vertices (and edges attached to dg(1=0)
them) on 2D space inside the unit square, for a given network topology
+  simulated annealing O/O
» trial movement: choose a random vertex with the coordinates (xo, y0) O

(x0,y0) — (xog + Az, yg + Ay) where Az and Ay are uniformly randomly
drawn from the interval [—, ]

» calculate the average (hopping-distance-based) GSN pathway d, which is
the object function to be minimized

 accept the movement if d, is decreased, or with probability p otherwise
* With p = pnien (heating) & p = piow (quenching) repeatedly
* record the layout with the minimum d; value



If we're designers/architects of systems ... (Part II)

 How to optimize the network layout for “greedy and
smart’ navigator with GSN strategy?

Layout optimization based on simulated annealing

+ initial configuration: randomly distributed vertices (and edges attached to dg(t=1)
them) on 2D space inside the unit square, for a given network topology
+  simulated annealing O/O
» trial movement: choose a random vertex with the coordinates (xo, y0) O

(x0,y0) — (xog + Az, yg + Ay) where Az and Ay are uniformly randomly
drawn from the interval [—, ]

» calculate the average (hopping-distance-based) GSN pathway d, which is
the object function to be minimized

 accept the movement if d, is decreased, or with probability p otherwise
* With p = pnien (heating) & p = piow (quenching) repeatedly
* record the layout with the minimum d; value



If we're designers/architects of systems ... (Part II)

 How to optimize the network layout for “greedy and
smart’ navigator with GSN strategy?

Layout optimization based on simulated annealing

* initial configuration: randomly distributed vertices (and edges attached to
them) on 2D space inside the unit square, for a given network topology

» simulated annealing

» trial movement: choose a random vertex with the coordinates (xo, y0)

(x0,y0) — (xog + Az, yg + Ay) where Az and Ay are uniformly randomly
drawn from the interval [—, ]

» calculate the average (hopping-distance-based) GSN pathway d, which is
the object function to be minimized

 accept the movement if d, is decreased, or with probability p otherwise
* With p = pnien (heating) & p = piow (quenching) repeatedly
* record the layout with the minimum d; value



Real (but model graphs, though) examples . . .
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Real (but model graphs, though) examples . . .
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Real (but model graphs, though) examples . . .

target
f o ® g @ e \
N @ @ @5 & -
O Q)
SN2 4 e
@@@ ®§®®%@ ‘ o ::(2
® :
CLapy @ \ source %
@
@ @@ .
@ y o GSN: source
® always finding GSN: real
® @ the “right” direction! = 8 steps shortest path
Y (d, < d, on a circle, always) (1,<ty) = 4 steps
p=0.2, MC step #0: 23.9910204082 steps.. -
R — —
2 ®
@ A @ ?
OII @
@ O
o ®e
@ ®
@ ®@
€)
@ @ "3
@
©

p=0.1, MC step #0: 7.97166666667 steps..



Kamada-Kawai (KK) spring layout vs GSN-pathway-optimized layout

(a) * O . J .
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FIG. 1: (color online) Examples of the optimal (a) and KK layout (b)

of the BA model. The GSN pathway is 3.85 (4.79) for the optimal
(KK) layout, respectively.
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FIG. 2: (color online) A typical time series of d, in the unit of MC
steps fvc, 1n case of the BA model used in Fig. 1, along with the real
shortest path length d, d, for the optimal layout L, [Fig. 1(a)] and
the KK layout [Fig. 1(b)]. The bursting part and almost flat plateau
correspond to the heating (phign) and quenching (piow) processes, re-
spectively. The moment of L, denoted as the vertical line.



Kamada-Kawai (KK) spring layout vs GSN-pathway-optimized layout
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steps fvc, 1n case of the BA model used in Fig. 1, along with the real R— —
shortest path length d, d, for the optimal layout L, [Fig. 1(a)] and

the KK layout [Fig. 1(b)]. The bursting part and almost flat plateau

correspond to the heating (phign) and quenching (piow) processes, re-

spectively. The moment of L, denoted as the vertical line.




looking at the GSN pathways in the optimized layout more closely . . .

average step decreased along the GSN pathways
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FIG. 4: (color online) Average step decreased along the GSN paths
in terms of the relative position f along the pathways, in the opti-
mized (a) and KK (b) layout. At least 18 graph ensembles are used
to average for all the cases, and the horizontal axis is equipartitioned
into appropriate bins. The error bars represent the standard deviation

of the average values of Ad(f) for each graph, over different graph
ensembles.
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ensembles.
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User-centric approach in architecture

* Lost in buildings”? Why are some buildings hard to "navigate?”
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the study of man

Human Movement and Architecture
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“What other monumental interior in Amerka produces
sch an overwhelming effect 7 cotic Lewss Mamford has
wked of New Yoek's Guggenheim Museum. “You may go
to this building to see Kandinsky or Jackson Pollock; you
temain to see Frank Lloyd Wright”

A constrection worker on architect Wright's gigantic
spiral expressed other ideas when the now-faggus building
WS going up n 1957:

The way | figure it is that this is the screwiest peoject |

ever got tied up in. The whole joint goes round and

roend and round and where it comes out nobody knows,

(The New Yorker)

Architects have long been interested in knowing how
their designs affect the traffic pattern within 2 building and
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Now, I'm here in Oxford, with this road network data from 100 ciues. . .
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Abstract

Intermediate-scale (or ‘meso-scale’) structures in networks have recelved considerable at-
tentlon, as the algorithmic detection of such structures makes it possible to discover petwork
features that are not apparent either at the Jocal scale of nodes and edges or at the global scale
of summary statistics. Numerous types of meso-scale structures can occur in networks, bat
investigations of meso-scale network features have focused predominantly on the identification
and study of community structure. In this paper, we develop & new method to investigate the
meso-scale feature known as core-periphery structure, which consists of an identification of a
network's nodes into & densely connected core and a sparsely connected peripbery. In contrast
to traditional petwork communities, the nodes in & core are also reasonably well-connected to
those in the peripbery. Our new method of computing core-periphery structure can dentify
multiple cores in a network and takes different possible cores into sccount, thereby enabling
a detailed description of core-periphery structure. We illustrate the differences between our
method and existing methods for identifying which nodes belong to & core, and we use it to
classify the most important nodes using examples of friendship, collaboration, transportation,
and voting networks.
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Taxonomies of networks from community structure

Jukka-Pekka Onnela,'***" Daniel J. Fenn,**" Stephen Reid,” Mason A. Porter,*” Peter J. Mucha,”
Mark D. Fricker,** and Nick S. Jones™ %0
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"Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom
(Received 30 November 201 1; published 10 September 2012)

The study of networks has become a substastial interdisciplinary endeavor that encompasses myriad disciplines
in the natural, social, and information sciences. Here we introduce a framework for constracting taxonomics of
networks based ca their structural similarities. These networks can arise from any of numerous sources: They
can be empirical or systhetic, they can arise from multiple realizations of a single process (either empirical
or synthetic), they can represent entirely different systems in differemt disciplines, eic, Because mesoscopic
properties of networks are hypothesized to be important for network function, we base cur comparisons on
summaries of network community structures. Although we use a specific method for uncovering network
commenities, much of the introduced framework is independent of that choice. After introducing the framework,
we apply it 1o construct a taxonomy for 746 networks and demonstrate that cur appeoach usefully identifies
similar networks, We also construct taxonomies within individual calegories of networks, and we thereby expose
nontrivial stracture. For example, we create taxonomies for similanity networks coastrucied from both political
voting data and financial data. We also construct network taxomomies to compare the social structares of 100
Facebook networks and the growth structures produced by different types of fungi.

DOL: 10.1103/PhysRevE.86.036 104 PACS number(s): 89.75 He
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The study of networks has become a substastial interdisciplinary endeavor that encompasses myriad disciplines
in the naural, social, and information sciences. Here we introduce a framework for constrocting taxonoenics of
networks based ca their structural similarities. These networks can arise from any of numerous sources: They
can be empirical or systhetic, they can arise from multiple realizations of a sisgle process (either empirical
or synthetic), they can represent entirely different systems in differemt disciplines, ctc, Because mesoscopic
properties of networks are hypothesized to be important for network function, we base cur comparisons on
summaries of network community structures. Although we use a specific method for uncovering network
commemities, much of the introduced framework is independent of that chobce. After introducing the framework,
we apply it 1o construct a taxonomy for 746 networks and demonstrate that cur appeoach usefully identifies
similar networks. We also construct taxonomies within individual calegories of networks, and we thereby expose
nontrivial stracture. For example, we create taxonomies for similanity networks coastrucied from both political
voting data and financial data. We also construct network taxomomies to compare the social structures of 100
Facebook networks and the growth structures produced by different types of fungi.
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FIG. 12. (Color) (a) Dendrogram of networks for six different
species of Saprotrophic basidiomycetes and the slime mold Physarum
polycephalum. Each leaf represents a replicate experiment. The colors
and numbers correspond to the following species: (1) Resinicium
bicolor, (2) Physarum polycephalum, (3) Phallus impudicus, (4)
Phanerochaete velutina, (5) Stropharia caerulea, and (6) Agrocybe
gibberosa. (b) Images illustrating the network structure of the
different species [53]. (c) Dendrogram of network development in six
replicate time series of Phanerochaete velutina. We color the leaves
by time, and the color bar underneath the leaves indicates experiment
number (1,...,6). In the inset, we show extracted networks that
illustrate the transition from simple branching trees to increasing
levels of interconnection (i.e., cross-linking) with time.
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Core-periphery structure of networks

- structural core-periphery
+ M. P. Rombach et al., arXiv:1202.2684 (and references therein).
- based on the structural definition: “core nodes tend to be connected to core
nodes, and peripheral nodes also tend to be connected to core nodes.”

- F

(a) (c) (d)

Figure 1: Different network block models. (a) Community structure, (b) core-periphery structure,
(c) global core-periphery structure with local community structure, and (d) global community
structure with local core-periphery structure. Note that (c) and (d) are equivalent.

- core-periphery in terms of transportation
+ M. Cucuringu et al., in preparation.
- backup-pathway-based definition:

Objective B1: Develop a novel computationally efficient core-periphery detection algorithm.
The approach we propose to investigate in this direction is reminiscent of the algorithm for computing a
measure of betweenness centrality in networks based on random walks [46]. Our approach aims at developing
a scoring method for nodes, based on computing shortest paths in a graph, which reflects the likelihood
of that node being in the core, and hence the name of PATH-SCORE (P-SCORE). In what follows, we
restrict our attention to undirected unweighted graphs, although we have experimented our approach on
weighted graphs and plan on considering directed networks. For each edge (i, j) of a graph G, we compute
the shortest path in G between nodes 7 and j, with edge (i, ) temporarily removed, and all nodes on this
shortest path increase their path-score value by +1. After repeating this procedure for all edges in G, each
node will have a P-Score that reflects the likelihood of that node being in the core. The intuition behind
our algorithm is that nodes that are in the core will be on many shortest path in the graph, while nodes in
the core will rarely be so.
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Objective B1: Develop a novel computationally efficient core-periphery detection algorithm.
1 The approach we propose to investigate in this direction is reminiscent of the algorithm for computing a
X measure of betweenness centrality in networks based on random walks [46]. Our approach aims at developing
a scoring method for nodes, based on computing shortest paths in a graph, which reflects the likelihood
,. of that node being in the core, and hence the name of PATH-SCORE (P-SCORE). In what follows, we
‘;1 restrict our attention to undirected unweighted graphs, although we have experimented our approach on
3 weighted graphs and plan on considering directed networks. For each edge (i, j) of a graph G, we compute
the shortest path in G between nodes ¢ and j, with edge (i, 7) temporarily removed, and all nodes on this
shortest path increase their path-score value by +1. After repeating this procedure for all edges in G, each
node will have a P-Score that reflects the likelihood of that node being in the core. The intuition behind
our algorithm is that nodes that are in the core will be on many shortest path in the graph, while nodes in
the core will rarely be so.
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P-SCORE for nodes and edges, considering the shortest path minimizing the sum of Euclidean distances
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Fungal network data: another transportation networks! (provided by Mark Fricker & Dan Fenn)

fusion2a

ref) L. Heaton ef al., Phys. Rev. E 86, 021905 (2012); Proc. R. Soc. B 277, 3265 (2012); Fungal Biology Reviews 26, 12 (2012). |



Fungal network data: another transportation networks! (provided by Mark Fricker & Dan Fenn)
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articie

A. Tero et al., Science 327, 439
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ref) L. Heaton ef al., Phys. Rev. E 86, 021905 (2012); Proc. R. Soc. B 277, 3265 (2012); Fungal Biology Reviews 26, 12 (2012). |




P-SCORE for nodes and edges, considering the optimal path maximizing the sum of “conductance’
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Summary and Outlook

- greedy navigation: a more realistic approach, exploiting local geometric
information

- modified centrality measures

- “Braess edge” phenomenon due to greediness

- properties of greedy-navigation-friendly network topology (shortcut
construction) or geometry (layout optimization)

- data: 100 road networks, 518 fungal networks, etc. (any suggestion or
donation? ;)

- core-periphery structure

- other mesoscopic properties (e.g., “‘taxonomy” analysis)
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Thank Yyou for Your attention! =)



